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Abstract

4D Audio-Visual Learning: A Visual Perspective of

Sound Propagation and Production

Changan Chen
The University of Texas at Austin, 2024

SUPERVISOR: Dr. Kristen Grauman

Humans use multiple modalities to perceive the world, including vision, sound,

touch, and smell. Among them, vision and sound are two of the most important

modalities that naturally co-occur. For example, we see and hear dogs barking,

people having conversations, or cars honking on roads in our daily lives.

Recent work has been exploring this natural correspondence between sight

and sound, which are, however, mainly object-centric, i.e., the semantic relations be-

tween objects and the sounds they make. While exciting, the correspondence with the

surrounding 3D space is often overlooked. For example, we hear the same sound dif-

ferently in different environments or even different locations in the same environment.

In this thesis, I present 4D audio-visual learning, which learns the correspondence be-

tween sight and sounds in spaces, providing a visual perspective of sound propagation

and sound production. More specifically, I focus on four topics in this direction: sim-

ulating sounds in spaces, navigating with sounds in spaces, synthesizing sounds in

spaces and learning action sounds. Throughout these topics, I use vision as the main

bridge to connect audio and scene understanding. Below, I will detail the work on

each of these topics.

Simulating sounds in spaces: Collecting visual-acoustic measurements is costly in
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the real world. To enable machine learning models, I begin with building a first-of-

its-kind simulation platform named SoundSpaces. Given any arbitrary source sound,

source/receiver locations, and the mesh of the 3D environment, SoundSpaces produces

realistic audio renderings simulating how sounds propagate in space as a function of

the 3D environments and materials of different surfaces. Coupled with a modern

visual rendering pipeline called Habitat, SoundSpaces produces 3D consistent visual

and audio renderings. It is also continuous, configurable, and generalizable to novel

environments. This platform has unlocked many research opportunities, enabling

multimodal embodied AI and beyond.

Navigating with sounds in spaces: In robotics, navigating to localize a sound is

an important application, for example, rescue robots searching for people or home

service robots locating speech commands. However, existing robots mainly perceive

the environment with vision sensors alone. To empower robots to see and hear, I

introduce the audio-visual navigation task, where an embodied agent must navigate

to the sounding object in an unknown environment by seeing and hearing. I train an

end-to-end navigation policy based on reinforcement learning that predicts an action

at every time step. This policy not only navigates to find the sounding object but

also generalizes to unheard sounds and unseen environments. In a follow-up work, I

introduce a hierarchical navigation policy that learns to set waypoints in an end-to-

end fashion which further improves the navigation efficiency of the previous work. I

also investigate the semantic audio-visual navigation problem, where sounds always

come from semantically meaningful and visible objects, and I show that my proposed

policy can learn to associate how objects sound to how they look without explicit

annotations. Lastly, I show that we can also transfer the policy trained in simulation

to the real world with frequency-adaptive prediction and demonstrate that with a

physical robot platform.

Synthesizing sounds in spaces: While it is important to study sight and sound

in an embodied setting, isolating perception from decision-making is also valuable

for applications in augmented reality or virtual reality, such as generating matching
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audio-visual streams for immersive experiences. I first propose the audio-visual dere-

verberation task, the goal of which is to remove reverberation from audio by utilizing

visual cues. I show that the proposed model does well on downstream tasks such as

speech recognition and speaker identification. In other applications, it is also desirable

to add reverberation to audio to match the environment acoustics. I then investigate

the inverse task: visual acoustic matching, where we transform audio to match the

acoustics of a scene. Coupled with a self-supervised acoustic alteration strategy, the

model learns to inject the proper amount of reverberation into the audio correspond-

ing to the acoustics of the space. Lastly, to model the fine-grained acoustic changes

within a scene, I propose the novel-view acoustic synthesis task, which requires the

model to further reason about the nuanced change of audio in the same space at novel

viewpoints.

Learning action sounds: Vision not only provides cues about how sound propagates

in the space as a function of the environment configurations but also captures how

sounds are produced. Learning or generating sounds from silent videos is important

for applications such as creating sound effects for films or virtual reality games. To

understand how our physical activities produce sound, I propose to learn how human

actions sound from narrated in-the-wild egocentric videos with a novel multimodal

consensus embedding approach. I show that our model successfully discovers sounding

actions from in-the-wild videos and learns embeddings for cross-modality retrieval. I

then investigate how to generate temporally and semantically matching action sounds

from silent videos. I propose a novel ambient-aware audio generation model that

learns to disentangle foreground action sounds from the ambient background sounds in

in-the-wild training videos, which also enables controllable generation of the ambient

sound.

Overall, my thesis covers promising directions in 4D audio-visual learning,

that is, building fundamental simulation platforms, enabling multimodal embodied

perception, providing faithful multimodal synthesis in 3D environments, and learning

action sounds from in-the-wild videos. I show results on real videos and real-world
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environments, as well as simulation. In the last chapter of my thesis, I outline the

potential research that remains to be explored in the future for 4D audio-visual learn-

ing.
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8.4 Qualitative examples. For all binaural audio, we show the left-
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plitude compared to the first prediction. For target viewpoint 3, it is
completely located outside of the living room, in which case, the sound
could only come from the door open on the right (louder right channel)
and the reverberation also greatly increases due to the vanishing direct
sound. Row 2: Replay-NVAS example where the speaker is located on
the left in the source viewpoint which becomes the right and further
from the camera in target viewpoint 2, the model also predicts lower
amplitude and louder right channel. On the right side, we show an ex-
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(bottom) from those that are not (top). Given egocentric training
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any given clip are best aligned only when both are also consistent with
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9.3 Multimodal contrastive-consensus loss. (a): Given three modal-
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further away. (b): However, not all modalities agree on how close they
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Chapter 1: Introduction

Humans use multiple modalities to perceive the world, including vision, sound,

touch, and smell. Among them, vision and sound are two important modalities that

provide complementary information about each other. For example, when we talk to

other people, we not only hear the speech sounds they make but also see their lip

movements, which are also indicative of the speech content. Or when we hear footsteps

approaching from behind, we also have the mental image of someone walking toward

us. Motivated by the correspondence between sight and sound, audio-visual learning

has gained popularity in the past few years. Various tasks have been introduced, for

example, audio-visual classification, where the goal is to classify the foreground object

based on both the audio and visual streams [11, 211, 46], audio-visual localization,

the goal of which is to localize sounding objects on the 2D plane [280, 255, 12], and

audio-visual separation, which separates sounds based on the association between

sounds and visual objects [322, 89, 211].

While audio-visual learning has achieved many breakthroughs, most of the

existing tasks focus on the semantic correspondence between single objects [11, 322,

211, 12]. While object-level correspondence has been extensively studied, the corre-

spondence between sound and space is often overlooked. When objects vibrate and

produce sound waves, the sound waves propagate and attenuate in the air, reflect

off, get absorbed or transmit through surfaces, and then reach our ears. Our ear

canals then shape the sound uniquely, allowing us to sense the direction of the sound

without looking at the objects. The sound we hear is thus a function of the geometry

of the space, materials of different objects, and the source/receiver locations. For

example, here are some phenomena we observe in our daily lives: as we move closer

to the sound source, the volume increases; if we speak in an empty room, there tends

to be a lot of reverberation; if we talk in a carpeted room, we can hear each other

more clearly; if we hear the alarm going off, we know it most likely comes from the
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Status quo: object-centric audio-visual learning
My research: learning correspondence 

between sight and sound in spaces

Audio-visual classification Audio-visual separation
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Figure 1.1: While the status quo of most audio-visual learning systems focuses on
object-level correspondences, my thesis considers the correspondence between sight
and sound in spaces.

kitchen. There is rich physical and semantic correspondence between sounds and

spaces. While it is impossible to get the full measurement of spaces in the real world,

vision captures important information about the surrounding environment, e.g., 3D

geometry, materials, and source/receiver locations, and connects sounds and spaces.

Studying the link between sounds and spaces is important to many rising

real-world applications in robotics, augmented reality (AR), and virtual reality (VR).

For example, for a home assistance robot, when it hears a sound, either humans’

speech commands or glass shattering (emergency), it needs to navigate to find where

the sound comes from and act accordingly. This requires the robot to reason about

how sounds change as it moves and in which room the sounding object is likely

to be located. When we wear AR glasses, we would like the glass to enhance our

experiences. For example, when we have conversations with people in a spacious

environment, we would like the glass to remove the reverberation in the sounds based

on visual observations of the space. When we talk with friends in virtual reality, we

also like to hear sounds consistent with what we see to have immersive experiences.

Motivated by these applications, my research aims to go beyond object-centric

audio-visual learning and study the correspondence between sight and sound in spaces,

thus audio-visual learning in 4D (3 spatial dimensions plus the time dimension).
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Figure 1.2: Research summary. My research approaches 4D audio-visual learning
by first simulating sounds in spaces (column 1) and then exploring active perception
with audio-visual navigation (column 2), synthesizing sounds in spaces (column 3),
and lastly learning action sounds from in-the-wild videos (column 4).

See Fig. 1.1. I investigate how sounds are produced and propagated in spaces from

a visual perspective, which is an underexplored area with many open challenges. For

sound propagation, I aim to answer a few important questions: 1) How do we get

scalable 3D audio-visual data since data is the key to all modern machine learning

algorithms? 2) In the context of mobile robot navigation, both the environment

and sound change as the robot moves around. How do we learn policies that make

the optimal movement decision while actively perceiving audio-visual inputs? 3)

For AR/VR applications, producing 3D consistent audio-visual streams is the key to

providing an immersive experience. How do we reason about the scene geometry’s

effect on the transformation of the sound from visuals? 4) For sound production,

how do we learn how human actions make sounds from in-the-wild videos that have
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coupled background sounds and no annotations?

To answer these questions, I approach 4D audio-visual learning by studying

the following topics (Fig. 1.2).

1. Simulating sounds in spaces: To address the data challenge, I take a simulation-

driven approach to allow clean and controllable generation of audio-visual data.

I build the first-of-its-kind audio-visual simulator SoundSpaces [35] that pro-

vides pre-rendered impulse responses for 3D environments. In follow-up work,

I further introduce SoundSpaces 2.0 [40] that renders on-the-fly and is both

configurable and generalizable to the real world. See this work in Chapter 3.

2. Navigating with sounds in spaces: Navigation is one of the essential abilities of

robots operating in the real world. For robots to actively perceive audio-visual

inputs, I start with tackling the navigation problem. I present the first audio-

visual navigation task and benchmark [35], an efficient hierarchical navigation

policy that learns to set waypoints [38], the semantic audio-visual navigation

task and model that reasons about the semantic relation between sounds and the

space [36], the continuous audio-visual navigation benchmark in SoundSpaces

2.0 [40], and lastly, a sim-to-real transfer technique for enabling audio-visual

navigation on real robots [45]. See this work in Chapter 4 and Chapter 5

3. Synthesizing sounds in spaces: For AR/VR applications, it is vital for device

wearers to perceive 3D consistent content (audio-visual streams) for an immer-

sive experience. Toward that goal, I study synthesizing acoustically correct

sounds given visuals of the scene. I introduce the audio-visual dereverberation

task that learns to remove reverberation with visual cues [42], the visual-acoustic

matching task that transforms an audio clip to match the acoustics of a space

specified in the image [39], and lastly the novel-view acoustic synthesis task

that given audio-visual observations from a reference viewpoint, synthesizes the

audio at a target viewpoint [41]. See this work in Chapter 6, Chapter 7 and

Chapter 8.
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4. Learning action sounds: Humans interact with surrounding objects every mo-

ment of our lives, which often produce sounds and are captured in videos. To

learn how sounds are produced, I focus on learning action sounds from in-the-

wild videos by answering two questions: whatactions make sounds, and how

to generate action sounds given a silent video? I first propose a novel self-

supervised embedding to learn what actions sound from narrated in-the-wild

egocentric videos [43]. I then devise a novel audio-conditioning mechanism to

generate action sounds given silent video by learning to disentangle foreground

action sounds and the ambient background sounds from in-the-wild videos [44].

See this work in Chapter 9 and Chapter 10.

Having overviewed the main thrusts of this thesis, I next provide more context

for these problem areas and summarize my insights and results. One of the main chal-

lenges in studying the acoustic correspondence between sight and sound is the lack of

data. Different from object-centric audio-visual learning, where recording videos of

audio-visual events is sufficient for studying the correspondence, understanding the

link between sound and spaces not only requires recording the sound but also measur-

ing the 3D spaces, which is very expensive. Even if we collected these 4D data, they

would be passive recordings, not meeting the requirement for robotics applications.

To address the data limitation, I propose to take a simulation-driven approach that

allows curating clean and controllable audio-visual data that are scalable with ma-

chine learning models. Specifically, I start by building the first audio-visual simulation

platform: SoundSpaces, which renders audio realistically based on the visual scans of

real-world environments. SoundSpaces precomputes room impulse responses (RIRs),

which is a transfer function that describes how sounds transform from the source

location to the receiver location based on the 3D environment. The precomputed

RIRs allow fast iteration of embodied tasks, especially reinforcement learning-based

models. However, SoundSpaces does not generalize to new environments or contin-

uous spaces. Thus, in follow-up work, we introduce SoundSpaces 2.0, which allows
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continuous spatial sampling, generalization to novel environments, and configurable

microphone and material properties. This geometry-based acoustic simulation offers

both high fidelity and realism while also being fast enough to be used for embodied

learning. We showcase the simulator’s properties and benchmark its performance

against real-world audio measurements. In Chapter 3, we discuss both SoundSpaces

versions and what they have enabled in research.

Enabled by the simulation, I then look into embodied settings where an agent

makes active decisions for movement while perceiving the environment. I focus on

navigation, which is an essential ability of robots operating in the real world. Fol-

lowing in the steps of visual navigation from egocentric observations [109, 188, 247],

I proposed the first audio-visual navigation task, where the goal is to find a sounding

object in an unknown environment. This has many applications in the real world.

For example, a rescue robot needs to find the source of the sound of someone yelling

for help when there is a fire, or a home robot needs to locate where the burglar is

when he breaks into the home. In Chapter 4, I introduce the definition of task, a

baseline navigation algorithm, and the benchmark. This model learns to act at a

fixed granularity of agent motion and relies on simple recurrent aggregations of the

audio observations. We further introduce an efficient hierarchical policy to audio-

visual navigation with two key novel elements: 1) waypoints that are dynamically set

and learned end-to-end within the navigation policy, and 2) an acoustic memory that

provides a structured, spatially grounded record of what the agent has heard as it

moves. Both new ideas capitalize on the synergy of audio and visual data to reveal the

geometry of an unmapped space. Lastly, we introduce a frequency-adaptive method

for transferring the policy from simulation to the real world and build a physical robot

that can navigate to sounding objects in the real world without being trained on any

real audio data.

In the previously defined audio-visual navigation, the task assumes a con-

stantly sounding target and restricts the role of audio to signal the target’s position

(an invisible point). This is a simplification of the real-world scenario where the
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sound-making object is visible and may only emit sounds for a short period of time.

In Chapter 5, we introduce the semantic audio-visual navigation task, where objects

in the environment make sounds consistent with their semantic meaning (e.g., toi-

let flushing, door creaking) and acoustic events are sporadic or short in duration.

We propose a transformer-based model to tackle this new semantic AudioGoal task,

incorporating an inferred goal descriptor that captures both spatial and semantic

properties of the target. Our model’s persistent multimodal memory enables it to

reach the goal even long after the acoustic event stops. In support of the new task,

we also expand the SoundSpaces audio simulations to provide semantically grounded

sounds for an array of objects in Matterport3D. Our method strongly outperforms

existing audio-visual navigation methods by learning to associate semantic, acoustic,

and visual cues.

When an intelligent agent moves around in the environment, understanding

the content of the sound is just as important as finding where the sound comes

from. For example, someone might ask a home robot to “bring me a coffee from the

kitchen” from a distance. The agent needs to perform both automatic speech recogni-

tion (ASR) and audio-visual navigation to bring the coffee to that person. However,

when receiving sounds from a distance, there is reverberation in the received sound,

which severely impacts the accuracy of automatic speech recognition. This is not

only harmful for robotic applications but also for human perception, where too much

reverberation in a video recording degrades the quality of speech. Prior work at-

tempts to remove reverberation based on the audio modality only. My idea is to

learn to dereverberate speech from audio-visual observations. The visual environment

surrounding a human speaker reveals important cues about the room geometry, ma-

terials, and speaker location, all of which influence the precise reverberation effects.

In Chapter 6, I introduce Visually-Informed Dereverberation of Audio (VIDA), an

end-to-end approach that learns to remove reverberation based on both the observed

monaural sound and visual scene. In support of this new task, I develop a large-

scale dataset SoundSpaces-Speech that uses realistic acoustic renderings of speech in
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real-world 3D scans of homes offering a variety of room acoustics. Demonstrating my

approach on both simulated and real imagery for speech enhancement, speech recog-

nition, and speaker identification, I show it achieves state-of-the-art performance and

substantially improves over audio-only methods.

In audio-visual dereverberation, the goal is to leverage the visual knowledge of

the 3D environment to help remove the reverberation in the speech. However, in some

other applications, synthesizing the acoustics of environments might be of vital im-

portance. For example, in virtual reality, we would like a person’s voice to sound like

it was produced in the virtual world, i.e., matching the acoustics of the environment

that we visually observe. For this reason, in Chapter 7, I introduce the visual acoustic

matching task, in which an audio clip is transformed to sound like it was recorded

in a target environment. Given an image of the target environment and a waveform

for the source audio, the goal is to re-synthesize the audio to match the target room

acoustics as suggested by its visible geometry and materials. To address this novel

task, I propose a crossmodal transformer model that uses audio-visual attention to

inject visual properties into the audio and generate realistic audio output. In addi-

tion, I devise a self-supervised training objective that can learn acoustic matching

from in-the-wild Web videos, despite their lack of acoustically mismatched audio. I

demonstrate that my approach successfully translates human speech to a variety of

real-world environments depicted in images, outperforming both traditional acoustic

matching and more heavily supervised baselines.

In visual acoustic matching, the goal is to match the acoustics of some tar-

get environments. However, since it only targets single-channel audio, it does not

account for the fine-grained acoustic changes, e.g., how the acoustics change from

one viewpoint in space to another in the same environment. This has applications

in augmented reality, where we would like to replay real-world videos from different

viewpoints. In Chapter 8, I introduce the novel-view acoustic synthesis (NVAS) task:

Given the sight and sound observed at a source viewpoint and the camera pose of an
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unseen target viewpoint, can we synthesize the sound of that scene from that view-

point? I propose a neural rendering approach: Visually-Guided Acoustic Synthesis

(ViGAS) network that learns to synthesize the sound at an arbitrary point in space

by analyzing the input audio-visual cues. To benchmark this task, I collect two first-

of-their-kind large-scale multi-view audio-visual datasets, one synthetic and one real.

I show that our model successfully reasons about the spatial cues and synthesizes

faithful audio on both datasets. To our knowledge, this work represents the very first

formulation, dataset, and approach to solving the novel-view acoustic synthesis task,

which has exciting potential applications ranging from AR/VR to art and design.

In the final thrust of my thesis, I explore the relationship between human ac-

tions and sounds. Our vision not only provides cues about sound waves propagating

in spaces, but also captures how these sound waves are produced by object collisions

or vibrations. We interact with objects around us at every moment of our lives, for

example, when we close a door, chop vegetables, or type on keyboards. These physical

activities produce sounds and are strongly associated with the subjects of our activ-

ity and how we perform it. Understanding the link between sounds and actions is

valuable for a number of applications, such as multimodal activity recognition, cross-

modal retrieval, or forecasting the physical effects of a person’s actions. In Soundin-

gActions (Chapter 9), we propose a novel self-supervised embedding to learn how

actions sound from narrated in-the-wild egocentric videos. Whereas existing meth-

ods rely on curated data with known audio-visual correspondence, our multimodal

contrastive-consensus coding (MC3) embedding reinforces the associations between

audio, language, and vision when all modality pairs agree while diminishing those

associations when any one pair does not. We show our approach can successfully dis-

cover how the long-tail of human actions sound from egocentric video, outperforming

an array of recent multimodal embedding techniques on two datasets (Ego4D [105]

and EPIC-Sounds [121]) and multiple crossmodal tasks.

Building on the ideas of SoundingActions, I expand the scope to go from dis-

covering action-sound associations, to actually generating the sounds that could go
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with a given visual action in video. The task offers a complementary way to study

the fundamental problem of audio-visual actions, and it also has various possible ap-

plications, such as creating sound effects for films or virtual reality games. Existing

approaches implicitly assume total correspondence between the video and audio dur-

ing training, yet many sounds happen off-screen and have weak to no correspondence

with the visuals—resulting in uncontrolled ambient sounds or hallucinations at test

time. In Chapter 10, we propose a novel ambient-aware audio generation model.

We devise a novel audio-conditioning mechanism to learn to disentangle foreground

action sounds from the ambient background sounds in in-the-wild training videos.

Given a novel silent video, our model uses retrieval-augmented generation to create

audio that matches the visual content both semantically and temporally. We train

and evaluate our model on two in-the-wild egocentric video datasets Ego4D [105] and

EPIC-KITCHENS [57]. Our model outperforms an array of existing methods, allows

controllable generation of the ambient sound, and even shows promise for generalizing

to computer graphics game clips. Overall, our work is the first to focus video-to-audio

generation faithfully on the observed visual content despite training from uncurated

clips with natural background sounds.

To summarize, my thesis focuses on studying the correspondence between

sight and sound in 3D spaces. This includes developing platforms, addressing active

perception challenges in robotics, tackling generation problems in augmented and

virtual reality, and studying how human actions produce sounds in real-world videos.

I have made the following contributions:

1. Built and supported a first-of-its-kind simulation platform SoundSpaces that

unlocks many research opportunities (Chapter 3).

2. Empowered embodied agents to see, hear, and move in 3D scenes and the ability

to actively locate sound sources in 3D environments (Chapter 4, Chapter 5).

3. Extended audio-visual generation to model 3D scene acoustics by reasoning
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about the acoustic properties of an environment from visuals to guide audio

generation (Chapter 6, Chapter 7, Chapter 8).

4. Enabled learning and generating long-tail human action sounds from in-the-wild

videos (Chapter 9, Chapter 10).

Next, I examine the significant related work pertinent to the research discussed

in this thesis. I present the methods discussed earlier in Chapter 4 to Chapter 10 in

detail. The concluding chapter summarizes the research conducted for my thesis and

outlines potential future directions that extend toward my long-term research goals

beyond this thesis.
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Chapter 2: Related Work

In this chapter, I review prior work relevant to my thesis, including audio-

visual learning (Sec. 2.1), embodied AI (Sec. 2.2), 3D environments and acoustics

(Sec. 2.3), and audio processing and sound synthesis (Sec. 2.4). The material in this

chapter serves both to understand the literature in the research explored in this thesis

and to introduce the difference between existing work and my proposed models.

2.1 Audio-Visual Learning

In this section, I review previous work on audio-visual localization, action

sounds, egocentric video understanding with audio, and the existing strategies for

fusing the audio and video streams together.

2.1.1 Audio-Visual Localization

The goal of audio-visual localization is to localize the object that makes sound

in video frames. The audio-visual correspondence (AVC) framework aims to maximize

the similarity between audio and visual features [12, 211]. This work typically deals

with single-source scenarios, but it is not capable of extending to multi-source sce-

narios. Other methods propose to combine audio-visual separation with audio-visual

localization and solve them jointly with a mix-and-separate strategy [322, 87].

Different from this work, my research focuses on localizing sounds in 3D. For

example, in audio-visual navigation (Chapter 4 and Chapter 5), the agent is tasked to

navigate in 3D spaces to find the goal. In addition, the agent can actively choose its

action while the existing work deals with passively collected videos. In Chapter 8, the

model also needs to reason the 3D location of the active speaker in order to transform

sounds from one location to another.
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2.1.2 Action Sounds

Some work [137, 199, 91] leverages audio to improve activity recognition on

video datasets such as UCF101 [261] and ActivityNet [73], which have visual labels but

no audio labels. Existing audio datasets such as AudioSet [93] and VGG-Sound [46]

target general sound classes such as music, speech, and sports. EPIC-Sounds [121]

provides an audio classification benchmark for actions in kitchen environments, but

it has no labels for the correspondence between the visual action and the sound.

The Greatest Hits dataset [212] contains videos where people hit and scratch object

surfaces with a drumstick, which enables audio synthesis from videos. Interaction

sound has also been studied in robotics, e.g., using a robotic platform to collect

sounds and study the synergy between action and sounds [85, 53]. Impact sounds are

modeled in a physics-based simulator [84].

Throughout, the existing work assumes a fixed, given taxonomy of action

classes or audio labels of interest. Different from this work, in Chapter 9, we learn how

actions make sounds from in-the-wild narrated egocentric videos, and in Chapter 10,

we study the action2sound generation problem from in-the-wild egocentric videos,

both without relying on a taxonomy of discrete labels for the audio events.

2.1.3 Egocentric Video Understanding with Audio

Understanding human activities in videos has long been a core challenge of

computer vision. Early research studies activity recognition from exocentric videos

such as UCF101 [261], Kinetics [136], or ActivityNet [73]. Recent work explores the

egocentric setting and introduces large egocentric datasets such as Ego4D [105] or

EPIC-KITCHENS [57]. Leveraging both the video and audio streams in egocentric

videos, many interesting tasks are enhanced, such as action recognition [137], local-

ization [230], active speaker localization [132], sounding object localization [120], and

state-aware visual representations from audible interactions [189].

Existing audio-visual learning work for egocentric video focuses on perception,
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i.e., understanding what happens in the video. In contrast, in Chapter 10, we target

the video-to-audio generation problem by learning to disentangle the action sound

from ambient sounds.

2.1.4 Multimodal Fusion

One standard solution for audio-visual feature fusion is to represent audio

as spectrograms, a matrix representation of the spectrum of frequencies of a signal

as it varies with time, process them with a convolutional neural network (CNN),

and concatenate with visual features from another CNN[211, 86, 70, 88, 35]. This

fusion strategy is limited by using one global feature to represent the scene and

thus supports only coarse-grained reasoning. The transformer [290] has proven to

be a power tool in vision [149, 95]. Its self-attention operation provides a natural

mechanism to fuse high-dimensional signals of different sensory modalities, and it has

been used in various tasks such as action recognition [21], self-supervised learning [6,

2, 216], and language modeling [107]. Audio-visual attention [285, 284, 166] has

been recently studied to capture the correlation between visual features and audio

features. In Chapter 7, I use crossmodal attention to learn how different regions of

the image contribute to reverberation. We show that compared with the conventional

concatenation-based fusion, the proposed model predicts acoustics from images more

accurately.

2.2 Embodied AI and Robotics

In this section, I review work that is related to my thesis in recent embodied

AI and robotics literature. More specifically, I will cover visual navigation, sound

source localization in robotics, audio-based navigation, hierarchical navigation, and

memory and mapping for 3D environments.
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2.2.1 Visual Navigation

To navigate autonomously, traditionally, a robot builds a map via 3D recon-

struction (i.e., SLAM) and then plans a path using the map [79]. Recent work in-

stead learns navigation policies directly from egocentric observations [109, 244, 188].

A popular task is PointGoal navigation, where the goal position is given to the

agent [109, 188, 247, 302]. Alternatively, in the ObjectGoal setting, the agent is

given an object label rather than the goal location, and must navigate to the near-

est instance of that category (e.g., go to a table) [327, 18, 31]. Visual navigation

can be tied to other tasks to attain intelligent behavior, such as question answer-

ing [101, 59, 60], active visual recognition [128], and instruction following [9, 47].

Previously, embodied agents were all deaf and did not have hearing ability. In

this thesis, I propose the AudioGoal task in Chapter 4 and the semantic AudioGoal

task in Chapter 5, which enable the embodied agent to both see and hear. In contrast

to both PointGoal and ObjectGoal, in both AudioGoal settings, the agent is not given

specific goal information. Instead, it needs to react to an acoustic event to determine

what kind of object is sounding and navigate to it. Furthermore, unlike ObjectGoal,

the agent needs to navigate to the specific object instance that emitted the sound

rather than any instance of that category. Our task represents real-world scenarios

where dynamic objects draw the attention of an agent and call it to action (e.g., the

sound of a heavy object falling upstairs).

2.2.2 Sound Localization in Robotics

In robotics, microphone arrays are often used for sound source localization [201,

232, 202, 203]. Past studies fuse AV cues for surveillance [309, 226], speech recog-

nition [317], human robot interaction [3, 292], and robotic manipulation tasks [239].

None attempt audio-visual navigation in unmapped environments. Concurrent work

explores AV navigation in computer graphics environments [83]. In contrast to our

end-to-end RL agent, their model decouples the task into predicting the goal location
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from audio and then planning a path to it. Our simulation platform SoundSpaces (in

Chapter 3) is more realistic for both visuals (real-world images in ours vs. computer

graphics in [83]) and acoustics (ray tracing/sound penetration/full occlusion model

in ours vs. low-cost game audio in [83]).

2.2.3 Audio-based Navigation

Cognitive science also confirms that audio is a strong navigational signal [278,

185]. Blind and sighted people show comparable skill on spatial navigation [76] and

sound localization [103, 162, 238, 294] tasks. Consequently, audio-based AR/VR

equipment has been devised for auditory sensory substitution for human users for

obstacle avoidance and navigation [183, 108]. Additionally, cartoon-like virtual 2D

and 3D AV environments can help evaluate human learning of audio cues [55, 303,

184]. Unlike our proposed SoundSpaces platform in Chapter 3, these environments

are non-photorealistic and they are for human navigators; they do not support AI

agents or training. Prior studies with autonomous agents in simulated environments

are restricted to human-constructed game boards, do not use acoustically correct

sound models, and train and test on the same environment [298, 305].

2.2.4 Hierarchical Navigation Policies

Current methods often learn policies that reward moving to the final goal loca-

tion using a step-by-step action space (e.g., TurnRight, MoveForward, Stop) [109, 187,

188, 247]. However, recent work explores ways to incorporate subgoals or waypoints

for PointGoal navigation. Taking inspiration from hierarchical learning [14, 198], the

general idea is to select a subgoal, use planning (or a local policy) to navigate to

the current subgoal, and repeat [262, 15, 32, 200, 308, 26]. For example, [15] apply

a CNN to the RGB input to predict the next waypoint—the ground truth of which

is collected using trajectory optimization—then apply model-based planning. Active

Neural SLAM (ANS) [32] plans a path to the point goal (or a predicted long-term
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exploration goal) using a partial map of the environment, generating each subgoal to

be within 0.25 m of the agent using an analytic shortest path planner.

I present a hierarchical navigation policy AV-WaN in Sec. 4.2.1.2. Differing

from the existing work on hierarchical navigation, AV-WaN not only tackles Audio-

Goal navigation but also learns to generate navigation subgoals in an end-to-end

fashion, whereas prior work relies on heuristics like selecting frontiers [26, 262] or

points along the shortest collision-free path [15, 32] to define subgoals.

2.2.5 Visual Semantic Memory and Mapping for 3D Environments

Learning-based visual mapping algorithms [116, 244, 110, 109] show exciting

promise to overcome the limits of purely geometric maps. Some methods to use

an implicit memory representation in navigation to aggregate observations, e.g., a

recurrent network [187, 247, 35, 154, 9, 193], and other methods leverage explicit map-

based memories to record occupancy [109, 48, 227, 32, 38, 225] or object locations [31,

28].

Prior work typically only stores visual observations in the memory and is

limited in the audio-visual navigation task. I introduce the first multimodal spatial

memory in Chapter 4, which encodes both visual and acoustic observations registered

with the agent’s movement along the ground plane. I show that multimodal memory

is essential for the agent to produce good action sequences.

In Chapter 5, the model is tasked to reason about the semantic relation of the

sporadic sounds and the environment. To capture long-term dependencies, another

promising direction is to use a transformer architecture [290] to record observations

and poses [74]. We build in this direction and introduce a scene memory transformer

that, unlike prior work, 1) is multimodal and 2) leverages an explicit learned goal

descriptor to attend to the memory. Our memory model learns audio-visual associ-

ations between the goal and the observations from the scene, a crucial functionality

as we demonstrate in experiments.
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2.3 3D Scenes and Acoustics

My thesis focuses on understanding the correspondence between sounds and

spaces. In this section, I will first review prior work that targets creating 3D environ-

ments, and then related work that simulates sounds, and lastly the 3D vision problem

of novel-view synthesis.

2.3.1 3D Environments

Recent research in embodied perception is greatly facilitated by new 3D envi-

ronments and simulation platforms. Compared to artificial environments like video

games [139, 161, 133, 311, 270], photorealistic environments portray 3D scenes in

which real people and mobile robots would interact. Their realistic meshes can be

rendered from agent-selected viewpoints to train and test RL policies for navigation

in a reproducible manner [7, 29, 312, 150, 13, 265, 25, 313, 247]. Many are cap-

tured with 3D scanners and real 360 photos, meaning that the views are indeed the

perceptual inputs a robot would receive in the real world [29, 265, 7]. None of the

commonly used environments and simulators provide audio rendering. We present the

first audio-visual simulator for AI agent training and the first study of audio-visual

embodied agents in realistic 3D environments in Chapter 3.

2.3.2 Acoustic Simulation

Sounds are first produced by vibrating objects and then propagate in space

before reaching human ears. Modeling sound propagation has a long history in the

literature, the goal of which is to simulate realistic high-fidelity audio that is consis-

tent with the given environment specification. Interactive acoustic simulation systems

have been extensively used in games and AR/VR applications. Sound propagation

algorithms typically fall into two main categories: wave-based [4, 134, 196] and ge-

ometric [80, 155, 250]. Wave-based methods aim to solve the wave equation numer-

ically, resulting in high computation expense. In the geometric method family, the
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Image-Source Methods [5] solve the specular reflection of sounds deterministically

but have low accuracy for late reverb, while path-tracing based approaches offer both

high accuracy and efficiency [245]. Aside from sound propagation, some simulators

like TDW [84] model impact sounds between objects.

Both SoundSpaces versions use a bidirectional path-tracing algorithm for ren-

dering audio. However, SoundSpaces 2.0 overcomes SoundSpaces’ core limitations

by enabling on-the-fly rendering, and we also augment the propagation algorithm

by adding diffraction and improving reverberation level accuracy. Compared to ex-

isting public platforms, SoundSpaces 2.0 adds significant generality and flexibility—

accepting arbitrary scene geometry, generalizing to new 3D meshes on the fly, ren-

dering in real-time, and allowing configuration of materials and microphones—all of

which we demonstrate.

2.3.3 Novel-View Synthesis (NVS)

Kickstarted by advances in neural rendering [258, 186], recent work considers

variants of the NVS problem. Most approaches assume dozens of calibrated images

for reconstructing a single static scene. Closer to monocular video NVS, authors

have considered reducing the number of input views [208, 125, 234, 319, 156] and

modeling dynamic scenes [164, 223, 215, 168, 269, 283]. However, none of this work

tackles audio. In Chapter 8, we introduce the first principled treatment of novel-view

acoustic synthesis (NVAS).

2.4 Audio Signal Processing and Sound Synthesis

A core problem throughout many of my papers is how to process or generate

audio signals. In this section, I will review the literature on audio dereverberation

and speech enhancement, as well as acoustic matching and spatialization.
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2.4.1 Audio Dereverberation and Speech Enhancement

Audio dereverberation and speech enhancement have a long and rich litera-

ture [207, 190, 206, 144, 19]. While dereverberation can be done with microphone

arrays, we focus on single audio channel approaches, which require fewer assumptions

about the input data. Recent deep learning methods achieve promising results to dere-

verberate [113, 306, 325, 71, 326, 267], denoise [315, 77, 267], or separate [118, 264]

the audio stream using audio input alone, and such enhancements can improve down-

stream speech recognition [147, 144] and speaker recognition [259]. Acoustic simula-

tions can provide data augmentation during training [144, 113, 147, 326]. Accounting

for environmental effects on reverb, some work targets “room-aware” deep audio fea-

tures capturing reverberation properties (e.g., RT60) [97], or injects reverberation

effects from a different room via acoustic matching [266]. To our knowledge, the only

prior work drawing on the visual stream to infer dereverberated audio is limited to

using lip regions on near-field faces to first separate out distractor sounds [274], and

does not model anything about the visual scene for dereverberation purposes. In

contrast, our dereverberation model in Chapter 6 accounts for the full visual scene,

far-field speech sources, and even out-of-view speakers. Our approach is the first to

learn visual room acoustics for dereverberation, and it yields state-of-the-art results

with direct benefits for multiple downstream tasks.

2.4.2 Acoustic Matching

The goal of acoustic matching is to transform an audio recording made in

one environment to sound as if it were recorded in a target environment. The audio

community deals with this task with various approaches depending on what infor-

mation about the target environment is accessible. If audio recorded in the tar-

get environment is provided, blind estimation of two acoustic parameters, direct-to-

reverberant ratio (DRR), which describes the energy ratio of direct arrival sound

and reflected sound, and reverberation time (RT60), the time it takes for a sound

46



to decay 60dB, is sufficient to create simple RIRs that yield plausibly matched au-

dio [65, 82, 145, 176, 194, 314]. Blind estimation of the room impulse response from

reverberant speech has also been explored [263, 296]. In music production, acoustic

matching is applied to change the reverberation to emulate that of a target space or

processing algorithm [152, 243]. Recent work conditions the target-audio generation

on a low-dimensional audio embedding [266]. Unlike any of the above audio-only

work, in Chapter 7, we introduce and tackle the visual acoustic matching problem,

where the target environment is expressed via an input image.

2.4.3 Audio Spatialization

While the goal of acoustic matching is to transform the audio to match the

acoustics of the environment, the goal of audio spatialization is to match the micro-

phone configuration from single-channel audio, e.g., binaural or ambisonics. Recently,

the vision community has explored spatializing sounds with video, which provides cues

of the sounding object locations. This work typically spatializes monaural sounds

by upmixing them to multiple channels conditioned on the video, where the sound

emitters are static [86, 191]. The monaural sounds used as input are obtained by

downmixing the target audio. These problems typically assume static emitter and

receiver locations, which simplifies the learning problem because acoustics is the same

between input and output. In Chapter 8, the novel-view acoustic synthesis is much

more complicated because it requires generating audio that both matches the acous-

tics of different locations as well as the binaural microphone configuration.
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Chapter 3: The SoundSpaces Platform

What we see and hear dominates our perceptual experience, and there is often a

strong relationship between the two modalities. At the object level, we can anticipate

the sounds an object makes based on how it looks, and vice versa (a dog barks, a

door slams, a baby cries). At the environment level, materials and geometry of the

surrounding 3D space that we see transform the sounds that reach our ears. For

example, a person speaking in a marble-floored, high-ceiling museum sounds distinct

from one speaking in a cozy carpeted bookshop.

Modeling the correspondence between visuals and acoustics in 3D spaces is of

vital importance for many applications in embodied AI and augmented/virtual reality

(AR/VR). For instance, a rescue robot needs to localize the person who is calling for

help; a service robot needs to look and listen to know if the espresso machine is

running properly; an AR system needs to generate sounds that are consistent with

the user’s acoustical environment for an immersive experience.

Realistic simulations of the first-person perceptual experience are a valuable

resource for AI research. They allow training and evaluating models at scale and in a

replicable manner. On the visual side, fast visual simulators [247, 273] coupled with

3D assets from scanned real-world environments [29, 312, 265, 228] have facilitated

substantial work in visual navigation and related tasks in recent years [302, 36, 9, 126,

231, 131], enabling rigorous benchmarks [210] and even successful “sim2real” transfer

to agents that move in the real world [299, 282, 135]. On the audio side, acoustic

simulation has been traditionally pursued for physical models [23], gaming [169] and

auralization for architectural design [293], typically restricted to simple parametric

geometries and in isolation from visual context.

In this chapter, I detail our efforts in building audio-visual simulation platforms

48



Figure 3.1: Acoustic simulation in SoundSpaces 1.0. We capture room impulse re-
sponses between each location pair within the illustrated grid (here for the ‘frl apartment 0’
scene in Replica). In our platform, agents can experience binaural audio at densely sampled
locations L marked with black dots—hearing the sound’s intensity, direction, and frequency
texture. Heatmaps display audio pressure fields, decreasing from red to blue. Left: When
a sound source in S is placed in the center. Right: When a source is placed on the stairs.
Notice how the sound received by the agent at different positions changes when the sound
source moves, and how 3D structures influence the sound propagation.

to enable embodied audio-visual learning as well as visual-acoustic learning. I will

introduce the first SoundSpaces platform [35] that was published in ECCV 2020 in

Sec. 3.1 and the enhanced version SoundSpaces 2.0 [40] that was published in NeurIPS

2022 in Sec. 3.2. Both papers introduced both the simulator and the audio-visual

navigation benchmark, which I will defer to Sec. 4.1 and Sec. 4.3.

In Sec. 3.1, I present the basics of our acoustic rendering pipeline and how we

pre-render impulse responses for discrete locations. Due to the pre-rendered nature,

SoundSpaces 1.0 is very fast but limited to discrete locations and environments. In

Sec. 3.2, I demonstrate how we build SoundSpaces 2.0 for real-time rendering and

customizing configurations as well as environments. SoundSpaces 1.0 is still one

order of magnitude faster (500 fps) than SoundSpaces 2.0 (30 fps). Both platforms

are valuable to the research community depending on the specific application.
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3.1 SoundSpaces: Simulating Sounds in 3D Environments

Our audio platform augments the Habitat simulator [247], particularly the

Matterport3D [29] and Replica [265] datasets hosted within it. Habitat is an open-

source 3D simulator with a user-friendly API that supports RGB, depth, and semantic

rendering. The API offers fast (over 10K fps) rendering and support for multiple

datasets [265, 312, 29]. This has incentivized embodied AI community to embrace it as

the 3D simulator for training navigation and question answering agents [247, 33, 148].

Matterport3D [29] is a dataset of 85 real-world homes and other indoor envi-

ronments with 3D meshes and image scans. The environments are large, with on aver-

age 517 m2 of floor space. Replica [265] is a dataset of 18 apartment, hotel, office, and

room scenes with 3D meshes. By extending these Habitat-compatible 3D assets with

our audio simulator, we enable users to take advantage of the efficient Habitat API and

easily adopt the audio modality for AI agent training. Our audio platform and data

are publicly available at https://github.com/facebookresearch/sound-spaces.

Our high-fidelity audio simulator takes into account important factors for a

realistic sound rendering in a 3D environment. We use a state-of-the-art algorithm

for room acoustics modeling [27] and a bidirectional path tracing algorithm to model

sound reflections in the room geometry [291]. Since materials also influence the

sounds received in an environment (e.g., walking across marble floors versus a shaggy

carpet), we set the acoustic material properties of major surfaces by mapping the

meshes’ semantic labels to materials in an existing database [66]. Each material has

different absorption, scattering, and transmission coefficients that affect our sound

propagation. This enables our simulator to model fine-grained acoustic properties

like sound propagation through walls.

For each scene, we simulate the acoustics of the environment by pre-computing

room impulse responses (RIR). The RIR is the 1D transfer function between a sound

source and microphone, which varies as a function of the room geometry, materials,

and the sound source location [158]. RIRs can be convolved with an arbitrary source
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audio signal to generate the audio signals received by the microphone [22, 27, 81, 245,

246]

Let S = {(xs
i , y

s
i , z

s
i )}Ni=1 denote the set of N possible sound source positions,

and let L = {(xr
i , y

r
i , z

r
i )}Ni=1 denote the set of possible listener positions (i.e., agent

microphones). We densely sample a grid of N locations with a spatial resolution of

0.5m (Replica) or 1m (Matterport). The Replica scenes range in area from 9.5 to

141.5 m2 and thus yield N ∈ [38, 566]; for Matterport the range is 53.1 to 2921.3

m2, with N ∈ [20, 2103]. Points are placed at a vertical height of 1.5m, reflecting the

fixed height of a robotic agent. Then we simulate the RIR for each possible source

and listener placement at these locations, S × L. Having done so, we can look up

any source-listener pair on the fly and render the sound by convolving the desired

waveform with the selected RIR. See Figure 3.1.

Given our simulations, for any audio source placed in a location Si we can gen-

erate the ambisonic audio (roughly speaking, the audio equivalent of a 360◦ image)

heard at a particular listener location Lj. We convert the ambisonics to binaural au-

dio [321] in order to represent an agent with two human-like ears, for whom perceived

sound depends on the body’s relative orientation in the scene.∗ Our platform also

permits the rendering of multiple simultaneous sounds.

Since an agent might not be able to stand at each location in L due to em-

bodiment constraints (e.g., no climbing on the sofa), we create a graph capturing

the reachability and connectivity of these locations. First we remove nodes that are

non-navigable, then for each node pair (i, j), we consider the edge e(i, j) as valid if

and only if the Euclidean distance between i and j is 0.5m for Replica or 1m for Mat-

terport (i.e., nodes i and j are immediate neighbors) and the geodesic and Euclidean

distances between them are equal (i.e., no obstacle in between). This navigability

graph is constructed due to RIRs being rendered on discrete grid. I will show later

∗While algorithms could also run with ambisonic inputs, using binaural sound has the advantage of allowing
human listeners to interpret our video results.
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in Sec. 3.2 that with continuous simulation, no graph construction is required.

3.1.1 Audio Simulation Details

Grid construction. We use an automatic point placement algorithm to determine

the locations where the simulated sound sources and listeners are placed in a two-

step procedure: adding points on a regular grid and then pruning. For adding points

on a regular grid, first, we compute an axis-aligned 3D bounding box of a scene.

Within this box we sample points from a regular 2D square grid with resolution 0.5m

(Replica) or 1m (Matterport) that slices the bounding box in the horizontal plane at

a distance of 1.5m from the floor (representing the height of a humanoid robot).

The second step prunes grid points in inaccessible locations. To prune, we

compute how closed the region surrounding a particular point is. This entails tracing

R uniformly distributed random rays in all directions from the point, then letting them

diffusely reflect through the scene up to B bounces using a path tracing algorithm.

Simultaneously, we compute the total number of “hits” H: the number of rays that

intersect the scene. After all rays are traced, the closed-ness C ∈ [0, 1] of a point is

given by C = H
R·B . A point is declared outside the scene if C < Cmin. the value of

C for a particular point is below a threshold Cmin. Finally, we remove points that

are within a certain distance dmin from the nearest geometry, as identified using the

shortest length of the initial rays traced from the point in the previous pruning step.

For all scenes we use R = 1000, B = 10 and dmin = 5cm. This value of dmin

was chosen to avoid the placement of points inside walls or in small inaccessible areas.

We find Cmin = 0.5 works for most scenes. The exceptions are scenes with open patio

areas, where we found Cmin = 0.1 works best to provide a sufficient number of points

on the patio.

Materials and transmission model. In addition to its geometry, a room’s ma-

terials affect the RIR. To capture this aspect, we use the semantic labels provided
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in Replica to determine the acoustic material properties of the geometry. For each

semantic class that was deemed to be acoustically relevant, we provide a mapping to

an equivalent acoustic material from an existing material database [66]. For the floor,

wall, and ceiling classes, we assume acoustic materials of carpet, gypsum board, and

acoustic tile, respectively. This helps simulate more realistic sounds than if a single

material were assumed for all surfaces. In addition, we add a ceiling to those Replica

scenes that lack one, which is necessary to simulate the acoustics accurately.

The simulation also includes a path-tracing simulation through walls accord-

ing to their material properties. Each material has absorption, scattering, and trans-

mission coefficients. We use a transmission model similar to that used in graphics

rendering. While this is modeled to ensure the precision of the simulation, the impact

of transmission is generally small compared to the propagation of sound through open

doors [171].

Acoustic simulation technique. During the simulations, we compute the room

impulse responses between all pairs of points, producing N2 RIRs. The simulation

technique stems from the theory of geometric acoustics (GA), which supposes sound

can be treated as a particle or ray rather than a wave [245]. This class of simulation

methods is capable of accurately predicting the behavior of sound at high frequencies,

but requires special modeling of wave phenomena (e.g., diffraction) that occur at

lower frequencies.Specifically, our acoustic simulation is based on a bidirectional path

tracing algorithm [291] modified for room acoustics applications [27]. Additionally, it

uses a recursive formulation of multiple importance sampling (MIS) to improve the

convergence of the simulation [94].

The simulation begins by tracing rays from each source location in S. These

source rays are propagated through the scene up to a maximum number of bounces

(200). At each ray-scene intersection of a source path, information about the inter-

sected geometry, incoming and outgoing ray directions, and probabilities are cached.
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After all source rays are traced, the simulation traces rays from a listener location in

L. These rays are again propagated through the scene up to a maximum number of

bounces. At each ray-scene intersection of a listener path, rays are traced to connect

the current path vertex to the path vertices previously generated from all sources.

If a connection ray is not blocked by scene geometry, a path from the source to the

listener has been found. The energy throughput along that path is multiplied by a

MIS weight and is accumulated to the impulse response for that source-listener pair.

After all rays have been traced, the simulation is finished.

We perform the simulation in parallel for four logarithmically-distributed fre-

quency bands.† These bands cover the human hearing range and are uniform in their

distribution from a perceptual standpoint. For each band, the simulation output is

a histogram of sound energy with respect to propagation delay time at audio sample

rate (44.1kHz for Replica and 16kHz for Matterport). Spatial information is also

accumulated in the form of low-order spherical harmonics for each histogram bin.

After ray tracing, these energy histograms are converted to pressure IR envelopes

by applying the square root, and the envelopes are multiplied by bandpass-filtered

white noise and summed to generate the frequency-dependent reverberant part of the

monaural room impulse response [159].

Ambisonic signals (roughly speaking, the audio equivalent of a 360◦ image)

are generated by decomposing a sound field into a set of spherical harmonic basis.

We generate ambisonics by multiplying the monaural RIR by the spherical harmonic

coefficients for each time sample. Early reflections (ER, paths of order ≤ 2) are

handled specially to ensure they are properly reproduced. ER are not accumulated

to the main energy histogram, but are instead clustered together based on the plane

equation of the geometry involved in the reflection(s). Then, each ER cluster is added

to the final pressure IR with frequency-dependent filtering corresponding to the ER

energy and its spherical harmonic coefficients.

†[0Hz,176Hz], [176Hz,775Hz], [775Hz,3409Hz], [3409Hz,20kHz]
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Figure 3.2: Pressure field of audio simulation overlaid on the top-down map
of apartment 2 from Replica [265]. Our audio-enabled agent gets rich directional
information about the goal, since the pressure field variation is correlated with the
shortest distance. Notice the discontinuities across walls and the gradient of the field
along the geodesic path an agent must use to reach the goal (different from shortest
Euclidean path). As a result, to an agent standing in the top right or bottom rooms,
the audio reveals the door as a good intermediate goal. In other words, the audio
stream signals to the agent that it must leave the current room to get to the target.
In contrast, the GPS displacement vector would point through the wall and to the
goal, which is a path the agent would discover it cannot traverse. Note that the
visual stream is essential to couple with the audio stream in order to navigate around
obstacles.

The result of this process is second-order ambisonic pressure impulse responses

that can be convolved with arbitrary new monaural source audios to generate the

ambisonic audio heard at a particular listener location. We convert the ambisonics

to binaural audio [321] in order to represent an agent with two human-like ears, for

whom perceived sound depends on the body’s relative orientation in the scene.

3.1.2 Visualizing Audio Simulations

Next, we illustrate the pressure field visualization of two other scenes in the

Replica dataset. In Fig. 3.2, we display another big scene (apartment 2) with four

rooms, with the audio source inside one of the rooms. Notice how the pressure

55



decreases from the source along geodesic paths, which leads to doors serving as sec-

ondary sources or intermediate goals that lead the agent in the right direction.

3.2 SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic
Learning

SoundSpaces’s [35] foremost limitation is its pre-computed, discretized nature.

The provided RIRs are pre-computed for all source and receiver pairs on a 0.5m grid,

and for a fixed list of 100 total environments. While this has the advantage of fast

rendering, it prevents sampling data at new locations. This in turn means that 1) an

agent in the simulator can only move or hop between discrete grid points in the space,

which abstracts away some difficult parts of the navigation task; 2) the simulations do

not generalize to novel environments—just the 100 provided; and 3) the pre-computed

data itself is on the order of TBs, impeding the ability to change configurations,

e.g., of the microphone types or materials. ThreeDWorld [84] offers continuous-space

rendering, yet it only supports audio rendering for simple 3D environment geometry,

namely an oversimplified “shoebox” (rectangular parallelepiped) model, and thus is

not applicable to real-scan datasets [312, 228]. In sum, existing audio-visual rendering

platforms fall short in accuracy, speed, and flexibility, which in turn constrains the

scope of research tasks they can support within audio-visual embodied learning [36,

62, 320] and visual-acoustic learning [257, 173, 39].

In this section, I introduce SoundSpaces 2.0, which performs on-the-fly geometry-

based audio rendering for arbitrary environments. Like SoundSpaces 1.0, it accounts

for all major real-world acoustic factors: direct sounds, early specular/diffuse reflec-

tions, reverberation, binaural spatialization, and frequency-dependent effects from

materials and air absorption. Unlike the original SoundSpaces, it allows highly re-

alistic rendering of arbitrary camera views and arbitrary microphone placements for

waveforms of the user’s choosing, accounting for. Furthermore, unlike SoundSpaces

1.0, SoundSpaces 2.0 generalizes audio simulation to any input mesh, making it pos-
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Figure 3.3: Illustration of SoundSpaces 2.0 rendering in a multi-room multi-floor
HM3D [228] environment. In this scenario, a boy is watching TV in the living room
while his mom calls him to have dinner from the kitchen downstairs. We model various
frequency-dependent acoustic phenomena for sound propagation from all sources (TV
and mom) to him, including direct sound, reflection, reverb, transmission, diffraction
and air absorption. The sound propagation is based on a bidirectional path-tracing
algorithm that takes the geometry of the scene as well as materials of objects in the
space as input. The received sound is spatialized to binaural with the head-related
transfer function (HRTF). As a result, SoundSpaces 2.0 renders the visual and audio
observations with spatial and acoustic correspondence. For example, the TV being
situated more towards the right results in right-ear signals that are stronger than
those in the left ear.

sible for the first time to import sound into well-used environment assets like Gib-

son [312], HM3D [228], and Matterport3D [29], as well as any future or emerging

one like Ego4D [105]. In addition, SoundSpaces 2.0 allows users to configure various

properties of the simulation, such as source-receiver locations, simulation parameters,

material properties, and microphone configuration. The rendering platform (illus-

trated in Fig. 3.3.) and associated research codebase are publicly available. ‡

I will describe the new platform and its functionality, and I illustrate its flexi-

bility with various concrete examples. In addition, I perform systematic experiments

to answer two questions: 1) How accurate are the audio-visual simulations? and

2) How well can machine learning models trained in SoundSpaces 2.0 generalize to

‡https://github.com/facebookresearch/sound-spaces
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Platform Audio-Visual Geometric Configurable Arbitrary Env

SoundSpaces [35] ✓ ✓ ✗ ✗

GWA [275] ✗ ✓ ✓ ✗

ThreeDWorld [84] ✓ ✗ ✓ ✗

Pyroomacoustics [248] ✗ ✗ ✓ ✗

SoundSpaces 2.0 (Ours) ✓ ✓ ✓ ✓

Table 3.1: Comparison with existing non-commercial datasets/simulation platforms.
Geometric refers to acoustic simulation that is based on geometry of the objects and
the space. Configurable means ability to alter simulation parameters, material and
microphone properties. Arbitrary Env refers to the ability to render for an arbitrary
new mesh environment, including point clouds generated in the wild.

real-world data? For this purpose, we collect real-world audio RIR measurements

for a public scene dataset Replica [265] and benchmark the simulation accuracy. We

also benchmark two downstream tasks: continuous audio-visual navigation (discussed

in Sec. 4.3) and far-field speech recognition. For speech recognition, we show that

machine-learning models trained on our synthetic data can generalize when tested on

real data. We also propose an acoustic randomization technique that models the real-

world distribution of materials’ acoustic properties, and we show that this strategy

leads to better sim2real generalization.

3.2.1 Rendering Pipeline

In this section, I will detail the features of SoundSpaces 2.0, including the sim-

ulation enhancement, continuity, configurability, generalizability and the rendering

modes.

3.2.1.1 Rendering Pipeline and Simulation Enhancements

The core of SoundSpaces 2.0 is the audio propagation engine (RLR-Audio-

Propagation) we are releasing for research purposes.§ We integrate this engine into

§https://github.com/facebookresearch/rlr-audio-propagation
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the existing visual simulator Habitat-Sim [247], which offers fast visual rendering.¶ In

addition, we provide high-level APIs for various downstream tasks (e.g., navigation)

and training scripts at the SoundSpaces repo.‖

Fig. 3.3 illustrates the propagation pipeline. Similar to SoundSpaces 1.0,

SoundSpaces 2.0 takes the scene mesh data processed by Habitat, together with source

and receiver locations specified by the user, and computes a room impulse response

(RIR) using a bidirectional path-tracing algorithm [27]. This module models vari-

ous acoustic phenomena, including reflection, transmission, and diffraction, as well as

spatialization. The simulation operates in M logarithmically-spaced frequency bands

(configurable), where it computes an energy-time histogram at the audio sampling

rate. This histogram incorporates spatial information using spherical harmonics for

each time sample that represents the directional distribution of arriving sound energy.

This representation is then spatialized to either an ambisonic or binaural pressure im-

pulse response [252], which can be convolved with the source audio signals to generate

the sound at the receiver position.

Compared to SoundSpaces 1.0 in Sec. 3.1, we have improved the simulation in

a few ways. SoundSpaces did not include any simulation of acoustic diffraction, and

thus exhibited abrupt occlusion of sources. We have removed this limitation using

the fast diffraction approach from [253], which is able to efficiently compute smooth

diffraction effects for occluded sources. We also improved the accuracy of the direct-

to-reverberant ratio (DRR), the ratio of the sound pressure level of a direct sound

from a directional source to the reverberant sound pressure level, by fixing a bias of
√

4π that was present in the indirect sound pressure of the original SoundSpaces.

In the following, we overview modeling advances in SoundSpaces 2.0 that

promote continuity, configurability, generalizability, and performance.

¶https://github.com/facebookresearch/habitat-sim/blob/main/docs/AUDIO.md
‖https://github.com/facebookresearch/sound-spaces
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3.2.1.2 Continuity

Spatial continuity. Humans move around in the real world continuously while

hearing. Given an arbitrary source location s, receiver location r, and receiver’s

heading direction θ in a given mesh environment, we render the impulse response

between the source and receiver as R(s, r, θ). The sound received by the receiver is

computed as Ar = As ∗R(s, r, θ), where As is the sound emitted from the source and

∗ denotes convolution. Whereas SoundSpaces [35] restricts the s and r locations to a

0.5m discrete grid due to its pre-computed approach and hefty storage requirements,

SoundSpaces 2.0 allows arbitrary placements.

Acoustic continuity. While an agent moves in the environment, it moves smoothly

from point A to point B (even with a small step size). With the spatial continuity

property, we can render R(s, rA, θA) and R(s, rB, θB) for these two locations respec-

tively. However, the original SoundSpaces takes the rendered IR for each location and

convolves it with the source sound directly as the audio observation. This calculation

implicitly assumes the source does not emit sound continuously, i.e., it starts to emit

when the agent moves to a new location, stops after one second, and resumes at the

agent’s next location.

In SoundSpaces 2.0, we introduce acoustic continuity for both the source sound

and listener. More specifically, given a sampling rate F and the time between two

steps ∆t, the number of received audio samples is N = F∆t per step. Assuming

a listener is at location xi at time ti, the audio signal received by the listener at

time ti emitted from the source at time tp is ti − R(s, xi, θxi
) + 1. We take the

corresponding source sound segment As[tp : tp + N ] and convolve it with R(s, xi, θxi
)

without zero padding to compute Axi
ti . Following the common practice [197], we apply

linear crossfading between A
xi−1

ti and Axi
ti to smooth out the transition from xi−1 to

xi with an overlap time window of T seconds.
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3.2.1.3 Configurability

Due to its pre-computed nature, it is impossible to change any simulation

setup (parameters, microphones, or materials) for the original SoundSpaces. All are

configurable in SoundSpaces 2.0, as summarized below.

Simulation parameters. We expose many useful parameters for users to configure,

including the sampling rate, the number of frequency bands, number of rays for

direct/indirect sounds, whether reflection, transmission or diffraction is enabled, etc.

Microphone types. We provide several types of built-in microphone configura-

tions, including monaural single-channel audio, binaural (modeling a human listener),

and ambisonics (full sphere surround sound). In addition, users are also able to con-

figure their own microphone array by specifying an array of monaural microphone

locations.

Custom HRTFs. We allow users to load their own head-related transfer functions

(HRTFs), which incorporate customized human perception in the acoustic rendering

simulation.

Material modeling. Materials of objects/surfaces have a big impact on how hu-

mans perceive the sound in an environment. Consider the difference between sound

in a recording studio versus a living room of the same size. Due to the absorptive

materials in the recording studio, the sound will consist primarily of direct sound

without reverberation, whereas in the living room, the sound will consist of a mixture

of direct sound and reverberation.

Existing real-scan datasets have semantic annotations at the level of object

categories, e.g., chair, table, couch and floor, while lacking material annotations of

what these objects are made of, e.g., wood or steel for tables. SoundSpaces coped
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with this issue by defining a fixed mapping from object categories to acoustic mate-

rials, e.g., floors are always mapped to the carpet material, which is very absorptive.

However, this fixed mapping fails to reflect the fact in the real world, different in-

stances of the same object category could have very different acoustic properties, e.g.,

a floor could be carpet or wood or concrete materials depending on the home type.

To account for this variation, we expose an API to let users define their own

acoustic material configurations. We provide 29 built-in acoustic materials, e.g.,

wood, concrete, curtain, soil, water. Every acoustic material has a list of candidate

object categories to be mapped from. It also has a set of coefficients for absorption,

scattering, and transmission in the following format: [f1, c1, f2, c2, ..., fn, cn], where fi

is a frequency and ci is the coefficient for a certain acoustic phenomenon at frequency

fi. This allows modeling the frequency-dependent acoustic properties of different

acoustic materials. For example, high-frequency waves are absorbed more compared

to low frequencies when reflecting from carpets.

We also model distance-dependent damping of the sound propagation me-

dia. This includes air absorption as well as transmission losses through materials.

Air absorption is calculated using an analytical model [16]. Users can specify the

frequency-dependent damping coefficients for each material, expressed as dB per me-

ter, in a similar format to the other material properties.

3.2.1.4 Generalizability

Generalization to scene datasets. Our new simulator accommodates arbitrary

3D meshes as input. This makes it compatible with all available scene datasets (e.g.,

Gibson [312], HM3D [228], Ego4D [105], Matterport3D [29], Replica [265]), as well as

any future assets that become available, such as if a user scans their own lab or home

environment. This is an important advance over SoundSpaces, which was restricted

to Replica and Matterport3D alone.
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Generalization to shoebox rooms. We expose APIs for creating shoebox rooms

with different materials for walls, which simulate simpler setups as in Pyroomacous-

tics [248] and TDW [84].

Generalization to the real world. The fidelity and flexibility of our simulation

platform also supports generalization to the real world. In Sec. 3.2.2, we score the

simulator output against real-world RIRs and show how machine learning models

trained on SoundSpaces 2.0 can generalize to real data.

3.2.1.5 Rendering Modes and Rendering Performance

Our simulation generates high-quality audio rendering based on mesh and

materials, and this fidelity can be instrumental for certain research areas. On the

other hand, in tasks like embodied navigation with reinforcement learning, which

typically require millions (or even billions [302]) of training iterations, rendering speed

is of vital importance. Thus, we offer two built-in rendering modes: high-speed and

high-quality.

In high-speed mode, we reduce the number of rays and improve the accuracy

by leveraging previously computed impulse responses [249], under the assumption

that movements are spatially continuous. Our algorithms use information computed

on previous simulation frames, such as sound propagation paths and RIRs, to reduce

the number of rays and ray bounces that are needed on each frame for sufficient sound

quality (see Sec.3.2.2.1). In high-quality mode, we set all rendering parameters to max

and turn off the temporal coherence feature to ensure that every impulse response is

accurate without temporal blurring. Our engine is multi-threaded and users can set

the number of threads when using either mode. See Sec. 3.2.2.1 for analysis of the

simulation performance in terms of speed and accuracy.

Despite that the high-speed mode can reach real-time performance (30 fps)

in SoundSpaces 2.0, the rendering is still one magnitude slower than SoundSpaces
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1.0 (500+ fps). As a result, for applications that require high rendering speed, e.g.,

online RL training, SoundSpaces 1.0 is still very useful.

3.2.2 Evaluation and Benchmarks

Next we evaluate both the simulation quality and its value for downstream

tasks with two machine learning benchmarks. Fig. 3.4a illustrates these two tasks.

3.2.2.1 Simulation Speed vs. Quality Tradeoff

To understand the tradeoff between the quality versus speed of rendering, we

report the accuracy and speed of different modes by rendering RIRs along random

trajectories with an average length of 15m across 20 Matterport3D environments. We

profile the speed on a Xeon(R) Gold 6230 CPU with 2.10GHz. See Table 3.2. For

accuracy, we measure the relative RT60 error of RIRs generated in high-speed mode

compared to RIRs generated in high-quality mode. RT60 is a standard acoustic

measurement that is defined as the time it takes for the sound pressure level to

reduce by 60 dB [124]. We see high-speed greatly improves efficiency over the high-

quality mode, by 8× with single thread and 33× with 5 threads, while only losing

9.5% accuracy despite RT60 calculation being noisy. When coupled with distributed

training, it meets the requirements of today’s RL agent training. In addition, we

test the navigation model trained in high-speed mode on high-quality mode; the

performance difference is smaller than 1% compared to the test performance in high-

speed mode in Table 4.6. In comparison, TDW [84] runs at 60 FPS and SoundSpaces

runs at 500+ FPS (bottleneck on I/O) at the cost of simplified room models or not

being configurable, respectively, c.f. Table 3.1. We treat high-quality mode as the

gold standard and benchmark its quality against real-world IRs next.

3.2.2.2 Validating Simulation Accuracy with Real IRs

How realistic are our audio simulations? To quantify this, we collect real acous-

tic measurements of the FRL apartment from the Replica dataset [265] and compare
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Table 3.2: Simulation speed vs. quality tradeoff. We report mean and standard
deviation over 5 runs.

Relative RT60 Error (%) 1 Thread (FPS) 5 Threads (FPS)

High-quality 0.0 ± 0.0 0.9 ± 0.0 4.0 ± 0.1

High-speed 9.5 ± 0.2 7.7 ± 0.2 33.5 ± 0.4

them to SoundSpaces 2.0 outputs. IR measurements were captured at seven different

source/receiver positions throughout the real-world apartment using an omnidirec-

tional B&K Type 4295 speaker (100Hz to 8kHz frequency response) and Earthworks

M30 microphone with the exponential sine sweep method. These measurements are

publicly available to assist future research.

Figure 3.4b compares the measurements to the corresponding simulations at

the same source/receiver positions, for both the original SoundSpaces and the pro-

posed SoundSpaces 2.0 (high-quality mode). ∗∗ We report the direct-to-reverberant

ratio (DRR) acoustic parameters derived from the impulse responses [124] in Fig-

ure 3.4b. SoundSpaces 2.0 has a better match of direct-to-reverberant ratio, where

the error compared to measurements is reduced from 11.0 dB to 0.98 dB on average,

while preserving the same relative RT60 error of 12.4%. Figure 3.4c reinforces that

advantage, plotting the energy-time curves of the simulations versus the real measure-

ments from 250Hz to 4000Hz. Overall, the proposed new features and improvements

lead to higher realism for the acoustic simulation.

3.2.2.3 Far-Field Automatic Speech Recognition

Speech recognition is critical for many applications, including far-field scenar-

ios where the speaker is far from the microphone (e.g., speaking to a smart home as-

sistant device). When speech recognition models are trained on a clean speech corpus,

such as LibriSpeech [214], they generalize poorly to far-field cases with unanticipated

∗∗The measurements were scaled to match the direct sound level of the simulations. The acoustic material
properties of the mesh were optimized to match the measurements following [251].
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Figure 3.4: (a) In this example, a person’s phone rings in the dining room while she is
in the living room and she asks the robot to bring her the phone. Upon receiving the
audio signal with the binaural microphone, the robot needs to figure out two things:
1) what she is saying (far-field automatic speech recognition) and 2) how to navigate
to her and the phone (audio-visual navigation). Note that far-field ASR is not limited
to robotics; it has various applications such as video captioning. (b) Comparing real
measurements and simulations in the Replica apartment [265] for 7 measurement
positions and the 250Hz to 4000Hz frequency band. SoundSpaces 2.0 has a much
lower error for the direct-to-reverberant ratio (DRR) compared to SoundSpaces. (c)
Energy decay curve comparisons. The energy decay curve of SoundSpaces 2.0 is much
closer to the real measurements than SoundSpaces.

reverberation. Due to the high expense of collecting real IRs, synthetic impulse re-

sponses are thus often used to augment speech for far-field ASR [147, 179, 275]. Here,

we propose to benchmark far-field ASR systems augmented by our generated impulse

responses.

We take the pretrained transformer-based ASR system from SpeechBrain [233],

an open-sourced speech toolkit, as the base model. For finetuning, we augment speech

in the train-clean-100 split of LibriSpeech [214] with IRs generated in different systems

and finetune 60 epochs. For testing, we augment speech from a real RIR dataset [272],

where IRs are recorded in real environments, e.g., home, conference rooms, audito-

riums. In this way, we test the sim2real generalization for models trained on the

synthetic data. We compare the pretrained model with the ASR model finetuned on

IRs generated with Pyroomacoustics, SoundSpaces 1.0, and SoundSpaces 2.0 (high-

quality mode). We ensured the simulated RIRs have matching RT60 distributions.
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Table 3.3: Far-field automatic speech recognition benchmark.

Word Error Rate (%)

Pretrained 29.10
Finetuned on real IRs [147] 13.32

Finetuned on Pyroomaoustics [248] 16.24
Finetuned on SoundSpaces 1.0 [35] 18.48

Finetuned on SoundSpaces 2.0 12.48

In addition, we compare with the ASR model finetuned on real IRs [147] from the

RWCP sound scene database [204], the 2014 REVERB challenge database [144], and

the Aachen impulse response database (AIR) [129].

Table 3.3 shows the results. As we can see, the pretrained model generalizes

poorly to far-field speech with word error rate (WER) of 29.1%, compared to 2.4%

WER on a clean test set lacking any reverberation. Finetuning with synthetic IRs

leads to a dramatic improvement. Comparing Pyroomacoustics and SoundSpaces 1.0

to SoundSpaces 2.0, our generated IRs lead to much lower WER. Finetuning on real

IRs also reduces the error substantially, but still not as much as our simulated data,

which can be generated at scale across a wide variety of environments. Our simulation

generates realistic IRs that help machine learning models generalize better to reality.

Acoustic randomization. In the real world, instances of a given object category

need not share identical material profiles. While existing simulations do not model

such nuances, in SoundSpaces 2.0 we can manipulate the materials in a more sub-

tle way. Inspired by domain randomization techniques [282, 286] that randomize

simulation parameters for better sim2real generalization, we explore if acoustic ran-

domization offers similar benefits. Specifically, we define a set of possible acoustic

materials for each object category. When rendering, a random material is picked

for a category to simulate the category-level variation. In addition, to model the

differences of acoustic materials, we add N(0, 0.1) Gaussian noise to each coefficient.

Altogether, this strategy models both the category-level and instance-level material
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nuances.

When we use the proposed acoustic randomization technique to generate the

same amount of data for finetuning, the ASR model has even lower WER on the test

set, reduced from 12.48% to 12.04%, while uniform randomization, i.e., uniformly

sampling coefficients between 0 and 1, leads to a higher WER of 12.58%. This not

only shows the benefit of acoustic randomization but also how SoundSpaces 2.0’s

configurability facilitates research on acoustic sim2real.

3.3 Conclusions

We believe SoundSpaces can facilitate significant new work in embodied AI,

multimodal perception, and audio research. The platform is general and accessible,

and our experiments offer concrete examples of its potential. This platform has been

used widely for various research, for example, learning neural acoustic fields [173],

audio-visual floorplan reconstruction [225], active audio-visual separation [177], and

audio localization from motion [49]. Some of the following chapters also utilize this

platform, including embodied audio-visual navigation (Chapter 4 and Chapter 5),

audio-visual dereverberation (Chapter 6), visual acoustic matching (Chapter 7 and

novel-view acoustic synthesis (Chapter 8). Beyond the vision community, the au-

dio community also sees benefits of this platform, e.g., the L3DAS23 Challenge was

organized in ICASSP 2023 based on data rendered with SoundSpaces.

Like any research tool, there are certain limitations and assumptions that are

important to recognize. Our simulation platform supports audio rendering for arbi-

trary environments with a state-of-the-art path-tracing algorithm. For this algorithm

to render accurately, the scene meshes need to have high quality, i.e., no large open

holes on the mesh, otherwise the rays will leak from the holes, resulting in inaccurate

simulation. To aid users in checking the mesh quality for audio rendering, we expose

an API to let users check the percentage of rays leaked from the mesh; users can re-

pair the mesh accordingly if the ray efficiency is low. Path tracing is also vulnerable
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to the standard shortcomings of geometrical-acoustics techniques, e.g., room modes,

though our implementation takes care to eliminate the typical lack of diffraction as

described in Sec. 3.1.

Materials have an impact on audio simulation, and one of the open challenges

of material modeling is that it is infeasible to accurately know the acoustic material

properties only given the environment meshes, e.g., we cannot estimate how much

energy the floor absorbs purely based on the mesh or rendered visuals. Currently,

we tackle that by assigning common material properties to objects (Sec. 3.2.1.3),

which allows our simulator to operate with fairly lightweight assumptions about the

incoming mesh. For more in-depth treatment of materials, one could perform acoustic

measurements into the environment scanning pipeline when creating a digital replica

of a real-world environment.

In this work, we validate the simulation accuracy with real IRs collected in

the apartment from the Replica dataset. To improve the simulation accuracy and

further understand its difference from the real world, future work could collect acoustic

measurements in diverse environments with varying geometry and materials, which

is supported by our simulation platform (Sec. 3.2.1.4).
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Chapter 4: Physical Audio-Visual Navigation

In Chapter 3, I introduced the SoundSpaces simulation platform, which sim-

ulates sounds as a function of the spatial configuration. This platform has enabled

various different applications, one of them being the active perception of sight and

sound in the environment. For robots with multimodal perception, the ability to

move around and reach a goal is essential. In this chapter, I will present the physical

audio-visual navigation task, where an agent navigates to a single point that emits

sounds. Later in Chapter 5, I will present the semantic audio-visual navigation task,

where the sound is emitted from a semantic object.

Embodied agents perceive and act in the world around them, with a constant

loop between their sensed surroundings and their selected movements. Both sights

and sounds constantly drive our activity: the laundry machine buzzes to indicate it is

done, a crying child draws our attention, and the sound of breaking glass may require

urgent help.

In embodied AI, the navigation task is of particular importance, with ap-

plications in search and rescue or service robotics, among many others. Naviga-

tion has a long history in robotics, where a premium is placed on rigorous geo-

metric maps [279, 114]. More recently, researchers in computer vision are explor-

ing models that loosen the metricity of maps in favor of end-to-end policy learning

and learned spatial memories that can generalize to visual cues in novel environ-

ments [327, 110, 109, 244, 8, 188, 247].

However, while current navigation models tightly integrate seeing and moving,

they are deaf to the world around them. This poses a significant sensory hardship:

sound is key to (1) understanding a physical space and (2) localizing sound-emitting

targets. As leveraged by blind people and animals who perform sonic navigation,

acoustic feedback partially reveals the geometry of a space, the presence of occluding
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Figure 4.1: Audio source in an unmapped 3D environment, where an autonomous agent
must navigate to the goal. The top-down map is overlaid with the acoustic pressure field
heatmap. Our audio-enabled agent gets rich directional information about the goal, since
the audio intensity variation is correlated with the shortest path distance. The acoustics
also reveal the room’s geometry, major structures, and materials. Notice the gradient of
the field along the geodesic path an agent must use to reach the goal (different from the
shortest Euclidean path, which would cut through the inner wall). As a result, the proposed
agent enjoys the synergy of both modalities: audio reveals the door as a good intermediate
goal, while vision reveals the physical obstacles along the path, such as the furniture in the
lefthand room.

objects, and the materials of major surfaces [219, 72]—all of which can complement

the visual stream. Meanwhile, targets currently outside the visual range may be

detectable only by their sound (e.g., a person calling from upstairs, the ringing phone

occluded by the sofa, footsteps approaching from behind). Finally, aural cues become

critical when visual cues are unreliable (e.g., the lights flicker off) or orthogonal to

the agent’s task (e.g., a rescue site with rubble that breaks prior visual context).

Motivated by these factors, I first introduce the audio-visual navigation bench-

mark presented in the original SoundSpaces paper in Sec. 4.1. I then improve the

navigation performance with a hierarchical policy in Sec. 4.2, which was published

in ICLR 2021 [38]. I also cover the continuous audio-visual navigation benchmark

presented in SoundSpaces 2.0 [40] in Sec. 4.3. Lastly, I introduce a frequency-adaptive

sim2real model that transfers audio-visual navigation policies trained in the simula-
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tion to the real world in Sec. 4.4.

Besides publications, I have organized the SoundSpaces Challenge ∗ at the Em-

bodied AI Workshop † at CVPR 2021, CVPR 2022 and CVPR 2023, and more than

12 teams have participated in the challenge. There have been other follow-up work

that presents variations of audio-visual navigation, for example, adversarial audio-

visual navigation [320], audio-visual navigation with dynamic sound sources [318]

and audio-visual-language navigation [217].

4.1 Audio-Visual Navigation Benchmark in SoundSpaces

In this section, I introduce audio-visual navigation for complex, visually realis-

tic 3D environments. The autonomous agent can both see and hear while attempting

to reach its target. We consider two variants of the navigation task: (1) AudioGoal,

where the target is indicated by the sound it emits, and (2) AudioPointGoal, where

the agent is additionally directed towards the goal location at the onset. The former

captures scenarios where a target initially out of view makes itself known aurally (e.g.,

phone ringing). The latter augments the popular PointGoal navigation task [8] and

captures scenarios where the agent has a GPS pointer towards the target, but should

leverage audio-visual cues to navigate the unfamiliar environment and reach it faster.

We propose a multi-modal deep reinforcement learning (RL) approach to train

navigation policies end-to-end from a stream of audio-visual observations. Impor-

tantly, audio observations must be generated with respect to both the agent’s current

position and orientation as well as the physical properties of the 3D environment.

With the previously introduced SoundSpaces platform (Sec. 3.1), the proposed em-

bodied AI agent learns a policy to choose motions in a novel, unmapped environment

that will bring it efficiently to the target while discovering relevant aspects of the

latent environment map. See Figure 4.1.

∗https://soundspaces.org/challenge
†https://embodied-ai.org/
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Our results show the powerful synergy between audio and vision for navigation.

The agent learns to blend both modalities to map novel environments, and doing so

yields faster learning at training time and faster, more accurate navigation at inference

time. Furthermore—in one of our most exciting results—we demonstrate that for an

audio goal, the audio stream competes well with the goal displacement vectors upon

which current navigation methods often depend [8, 247, 102, 148, 33], while having

the advantage of not assuming perfect GPS odometry. Finally, we explore the agent’s

ability to generalize to not only unseen environments, but also unheard sounds.

4.1.0.1 The audio-visual navigation task

We propose two novel navigation tasks: AudioGoal Navigation and Audio-

PointGoal Navigation. In AudioGoal, the agent hears an audio source located at the

goal—such as a phone ringing—but receives no direct position information about the

goal. AudioPointGoal is an audio extension of the PointGoal task studied often in

the literature [8, 247, 102, 313, 148, 33] where the agent hears the source and is told

its displacement from the starting position. In all three tasks, to navigate and avoid

obstacles, the agent needs to reach the target using sensory inputs alone. That is, no

map of the scene is provided to the agent.

Task definitions. For PointGoal [8, 247, 302], a randomly initialized agent is tasked

with navigating to a point goal defined by a displacement vector (∆0
x,∆

0
y) relative

to the starting position of the agent. For AudioGoal, the agent instead receives

audio from the sounding target; the AudioGoal agent does not receive a displacement

vector pointing to the target. The observed audio is updated as a function of the

location of the agent, the location of the goal, and the structure and materials of

the room. In AudioPointGoal, the agent receives the union of information received

in the PointGoal and AudioGoal tasks, i.e., , audio as well as a point vector. Note

that physical obstacles (walls, furniture) typically exist along the displacement vector,

which the agent must sense while navigating.
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Agent and goal embodiment. We adopt the standard cylinder embodiment used

in Habitat. A target has diameter 0.2m and height 1.5m, and, consistent with prior

PointGoal work, has no visual presence. While the goal itself does not have a visible

embodiment (currently unsupported in Habitat), vision—particularly in the abstrac-

tion of depth—is essential to detect and avoid obstacles to move towards the target.

Hence, all the tasks have a crucial vision component.

Action space. The action space is: MoveForward, TurnLeft, TurnRight, and Stop.

The last three actions are always valid. The MoveForward action is invalid when

the agent attempts to traverse from one node to another without an edge connecting

them (as per the graph defined in Sec. 3.1). If valid, MoveForward takes the agent

forward by 0.5m (Replica) or 1m (Matterport). For all models, there is no actuation

noise, i.e., , a step executes perfectly or does not execute at all.

Sensors. The sensory inputs are binaural sound (absent in PointGoal), GPS (ab-

sent in AudioGoal), RGB, and depth. To capture binaural spatial sound, the agent

emulates two microphones placed at human height. We assume an idealized GPS

sensor, following prior work [247, 33, 102, 148]. However, as we will demonstrate in

results, our audio-based learning provides a steady navigation signal that makes it

feasible to disable the GPS sensor for the proposed AudioGoal task.

Episode specification. An episode of PointGoal is defined by an arbitrary 1) scene,

2) agent start location, 3) agent start rotation, and 4) goal location. In each episode

the agent can reach the target if it navigates successfully. An episode for AudioGoal

and AudioPointGoal additionally includes a source audio waveform. The waveform is

convolved with the RIR corresponding to the specific scene, goal, agent location and

orientation to generate dynamic audio for the agent. We consider a variety of audio

sources, both familiar and unfamiliar to the agent (detailed below). An episode is

successful if the agent executes the Stop action while being exactly at the location
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of the goal. Agents are allowed a time horizon of 500 actions for all tasks, similar

to [247, 127, 33, 102, 148].

4.1.1 Navigation Network and Training

To navigate autonomously, the agent must be able to enter a new yet-unmapped

space, accumulate partial observations of the environment over time, and efficiently

transport itself to a goal location. Building on recent embodied visual navigation

work [327, 110, 109, 8, 188, 247], we take a deep reinforcement learning approach,

and we introduce audio to the observation. During training, the agent is rewarded

for correctly and efficiently navigating to the target. This yields a policy that maps

new multisensory egocentric observations to agent actions.

Sensory inputs. The audio inputs are spectrograms, following literature in audio

learning [213, 322, 86]. Specifically, to represent the agent’s binaural audio input

(corresponding to the left and right ear), we first compute the Short-Time Fourier

Transform (STFT) with a hop length of 160 samples and a windowed signal length of

512 samples, which corresponds to a physical duration of 12 and 32 milliseconds at a

sample rate of 44100Hz (Replica) and 16000Hz (Matterport). By using the first 1000

milliseconds of audio as input, STFT gives a 257×257 and a 257×101 complex-valued

matrix, respectively; we take its magnitude and downsample both axes by a factor

of 4. For better contrast we take its logarithm. Finally, we stack the left and right

audio channel matrices to obtain a 65 × 65 × 2 and a 65 × 26 × 2 tensor, denoted A.

The visual input V is the RGB and/or depth image, 128× 128× 3 and 128× 128× 1

tensors, respectively, where 128 is the image resolution for the agent’s 90◦ field of

view. The relative displacement vector ∆ = (∆x,∆y) points from the agent to the

goal in the 2D ground plane of the scene.

Which specific subset of these three inputs (audio, visual, vector) the agent re-

ceives depends on the the agent’s sensors and the goal’s characterization (cf. Sec. 4.1).

75



CNN

CNN

𝑓! (𝑉)
𝑓" (𝐴)

𝑓∆ (∆)

GRU 𝑂$

Critic

Actor Action 
Sampler

Environment

𝑎$

ℎ$%& ℎ$

RGB

Depth

Spectrogram

(∆', ∆()

Audio

Left

Right

Vision

Figure 4.2: Audio-visual navigation network. Our model uses both acoustic and visual
cues from the 3D environment for effective navigation of complex scenes.

The sensory inputs are transformed to a probability distribution over the action space

by the policy network, as we describe next.

Network architecture. Next we define the parameterization of the agent’s policy

πθ(at|ot, ht−1), which selects action at given the current observation ot and aggregated

past states ht−1, and the value function Vθ(ot, ht−1), which scores how good the current

state is. Here θ refers to all trainable weights of the network.

Our network architecture is inspired by current RL models in the visual navi-

gation literature [247, 304, 58, 127]. We expand the traditional vision-only navigation

model to enable acoustic perception for audio-visual navigation. As highlighted in

Fig. 4.2, we transform A and V by corresponding CNNs fA(·) and fV (·). The CNNs

have separate weights but the same architecture of conv 8× 8, conv 4× 4, conv 3× 3

and a linear layer, with ReLU activations between each layer. The outputs of the

CNNs are vectors fA(A) and fV (V ) of length LA and LV , respectively. These are

concatenated to the relative displacement vector ∆ and transformed by a gated re-

current unit (GRU) [52]. The GRU operates on the current step’s input as well as the
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accumulated history of states ht−1. The GRU updates the history to ht and outputs

the representation of the agent’s state ot. Finally, the value of the state Vθ(ot, ht−1)

and the policy distribution πθ(at|ot, ht−1) are estimated using the critic and actor

heads of the model. Both are linear layers.

Training. We train the network with Proximal Policy Optimization (PPO) [254].

The agent is rewarded for reaching the goal quickly. Specifically, it receives a reward

of +10 for executing Stop at the goal location, a negative reward of −0.01 per time

step, +1 for reducing the geodesic distance to the goal, and the equivalent penalty

for increasing it. We add an entropy maximization term to the cumulative reward

optimization, for better action space exploration [112, 254].

Synergy of audio for navigation. Because our agent can both hear and see,

it has the potential to not only better localize the target (which emits sound), but

also better plan its movements in the environment (whose major structures, walls,

furniture, etc. all affect how the sound is perceived). See Figure 3.1. The optimal

policy would trace a path P∗ corresponding to monotonically decreasing geodesic

distance to the goal. Notably, the displacement ∆ does not specify the optimal

policy: moving along P∗ decreases the geodesic distance but may decrease or increase

the Euclidean distance to the goal at each time step. For example, if the goal is

behind the sofa, the agent must move around the sofa to reach it. Importantly, the

audio stream A has complementary and potentially stronger information than ∆ in

this regard. Not only does the intensity of the audio source reflect the Euclidean

distance to the target, but also the geometry of the room captured in the acoustics

reveals geodesic distances. As we show in results, the visual and aural inputs are

synergistic; neither fares as well on its own.

Implementation details. The lengths of audio, visual, point vector, and final

state, i.e., , LA, LV , L∆, and LS are 512, 512, 2, and 1026, respectively. We use
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Table 4.1: Summary of SoundSpaces dataset properties

Dataset # Scenes Resolution Sampling Rate Avg. # Node Avg. Area # Training Episodes # Test Episodes

Replica 18 0.5m 44100Hz 97 47.24 m2 0.1M 1000
Matterport3D 85 1m 16000Hz 243 517.34 m2 2M 1000

a single bidirectional GRU with input size 512, hidden size 512, and we use one

recurrent layer. We optimize the model using Adam [143] with PyTorch defaults for

coefficients for momentum and a learning rate of 2.5e− 4. We discount rewards with

a decay of 0.99. We train the network for 30M agent steps on Replica and 60M on

Matterport3D, which amounts to 105 and 210 GPU hours respectively.

4.1.2 Experiments

Our main objectives are to show:

1. Tackling navigation with both sight and sound (i.e., , the proposed AudioPoint-

Goal) leads to better navigation and faster learning. This demonstrates that

audio has complementary information beyond merely goal coordinates that fa-

cilitates navigation.

2. Listening for an audio target in a 3D environment serves as a viable alternative

to GPS-based cues. Not only does the proposed AudioGoal agent navigate

better than the PointGoal agent, it does so without PointGoal’s assumption

of perfect odometry and even with noisy audio sensors. The AudioGoal task

has the important advantage of realism: the agent autonomously senses the

target in AudioGoal, whereas the target is directly given to the agent via ∆ in

PointGoal—a rare scenario in real applications.

3. Audio-visual navigation can generalize to both new environments and new

sound sources. In particular, audio-visual agents can navigate better with audio

even when the sound sources are unfamiliar.
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Datasets. Table 4.1 summarizes SoundSpaces, which includes audio renderings for

the Replica and Matterport3D datasets. Each episode consists of a tuple: ⟨scene,

agent start location, agent start rotation, goal location, audio waveform⟩. We generate

episodes by choosing a scene and a random start and goal location. To eliminate easier

episodes, we prune those that are either too short (geodesic distance less than 4) or

can be completed by moving mostly in a straight line (ratio of geodesic to Euclidean

distance less than 1.1). We ensure that at the onset of each episode the agent can

hear the sound, since in some large environments the audio might be inaudible when

the agent is very far from the sound source.

Sound sources. Recall that the RIRs can be convolved with an arbitrary input

waveform, which allows us to vary the sounds across episodes. We use 102 copyright-

free natural sounds of telephones, music, fans, and others (http://www.freesound.

org). Unless otherwise specified, the sound source is the telephone ringing. We

stress that in all experiments, the environment (scene) at test time is unmapped and

has never been seen previously in training. It is valid for sounds heard in training

to also be heard at test time, e.g., a phone ringing in multiple environments will

sound different depending on both the 3D space and the goal and agent positions.

Experiments for objective 3 examine the impact of varied train/test sounds.

Metrics. We use the success rate normalized by inverse path length (SPL), the

standard metric for navigation [8]. We consider an episode successful only if the

agent reaches the goal and executes the Stop action.

Baselines. We consider three non-learning baselines adapted from previous work

[247, 48]: Random chooses an action randomly among {MoveForward, TurnLeft,

TurnRight}. Forward always calls MoveForward and if it hits an obstacle, it calls

TurnRight then resumes going forward and repeats. Goal follower always first

orients itself towards the goal and then calls MoveForward. All three issue the Stop

action upon reaching the goal.
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Table 4.2: Adding sound to sight and GPS sensing improves navigation performance sig-
nificantly. Values are success rate normalized by path length (SPL); higher is better.

Replica Matterport3D
PointGoal AudioPointGoal PointGoal AudioPointGoal

Baselines
Random 0.044 0.044 0.021 0.021
Forward 0.063 0.063 0.025 0.025

Goal follower 0.124 0.124 0.197 0.197

Varying visual sensor
Blind 0.480 0.681 0.426 0.473
RGB 0.521 0.632 0.466 0.521
Depth 0.601 0.709 0.541 0.581

1: Does audio help navigation? First we evaluate the impact of adding audio

sensing to visual navigation by comparing PointGoal and AudioPointGoal agents.

Table 4.2 compares the navigation performance (in SPL) for both agents and the

baselines on the test environments. We consider three visual sensing capabilities: no

visual input (Blind), raw RGB images, or depth images. (We found RGB+D was no

better than depth alone.)

Audio improves accuracy significantly, showing the clear value in multi-modal

perception for navigation. Both learned agents do better with stronger visual inputs

(depth being the strongest), though the margin between RGB and depth is a bit

smaller for AudioPointGoal. This is interesting because it suggests that audio-visual

learning captures geometric structure (like depth) from the raw RGB images more

easily than a model equipped with vision alone. As expected, the simple baselines

perform poorly because they do not utilize any sensory inputs (and hence perform

the same on both tasks).

To see how audio influences navigation behavior, Fig. 4.3 shows example tra-

jectories.

2: Can audio supplant GPS for an audio target? Next we explore the extent

to which audio supplies the spatial cues available from GPS sensing during (audio-)

visual navigation. This test requires comparing PointGoal to AudioGoal. Recall that
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Table 4.3: Navigation performance (SPL) when generalizing to unheard sounds. Higher is
better. Results are averaged over 7 test runs; all standard deviations are ≤ 0.01.

Same sound Varied heard sounds Varied unheard sounds
Dataset PG AG APG AG APG AG APG

Replica
Blind 0.480 0.673 0.681 0.449 0.633 0.277 0.649
RGB 0.521 0.626 0.632 0.624 0.606 0.339 0.562
Depth 0.601 0.756 0.709 0.645 0.724 0.454 0.707

Matterport3D
Blind 0.426 0.438 0.473 0.352 0.500 0.278 0.497
RGB 0.466 0.479 0.521 0.422 0.480 0.314 0.448
Depth 0.541 0.552 0.581 0.448 0.570 0.338 0.538

unlike (Audio)PointGoal, AudioGoal receives no displacement vector pointing to the

goal; it can only hear and see.

Fig. 4.4a reports the navigation accuracy as a function of GPS quality. The

leftmost point uses perfect GPS that tells the PointGoal agents (but not the Audio-

Goal agent) the exact direction of the goal; for subsequent points, Gaussian noise

of increasing variance is added, up to σ = 1.5m. All agents use depth. While Au-

dioGoal’s accuracy is by definition independent of GPS failures, the others suffer

noticeably.‡. This may be why AG is better than PG and APG on Replica. Fur-

thermore, AudioPointGoal (APG) degrades much more gracefully than PointGoal

(PG) in the face of GPS noise. This is evidence that the audio signal gives simi-

lar or even better spatial cues than the PointGoal displacements—which are likely

overly optimistic given the unreliability of GPS in practice and especially indoors. T-

SNE [289] visualizations (Fig. 4.4b) reinforce this finding: our learned audio features

for AudioGoal naturally encode the distance and angle to the goal. Note that these

findings stand even with microphone noise: with 40dB SNR (bad microphone), SPL

only drops marginally from 0.756 to 0.753 and from 0.552 to 0.550 on Replica and

Matterport, respectively.

Next we explore whether our AudioGoal agent learned more than a pointer

‡Replica has more multi-room trajectories, where audio gives clear cues of room entrances/exits (vs. open floor
plans in Matterport)
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PointGoal AudioGoal AudioPointGoal

Agent Start Goal Shortest path Agent path Seen/Unseen area Occupied area

Figure 4.3: Navigation trajectories on top-down maps. Agent path color fades from
dark blue to light blue as time goes by. Green path indicates the shortest geodesic path.
Top: Replica - The PointGoal agent bumps into the wall several times trying to move
towards the target, unable to figure out the target is actually located in another room.
In contrast, the AudioGoal and AudioPointGoal agents better sense the target: the sound
travels through the door and the agent leaves the starting room immediately. Bottom:
Matterport - the AudioGoal agent best avoids backtracking to efficiently reach the target
in a large multi-room home.
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(b) t-SNE of AudioGoal audio feature

Figure 4.4: Audio as a learned spatial sensor. (a) Navigation accuracy with increasing
GPS noise. Unlike existing PointGoal agents, our AudioGoal agent does not rely on GPS,
and hence is immune to GPS noise. (b) t-SNE projection of audio features, color coded to
reveal their correlation with the goal location (left) and direction (right), i.e., , source is far
(red) or near (violet), and to the left (blue) or right (red) of the agent.
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Turn Left Turn Right Stop

Turn RightMove ForwardTurn Left

Figure 4.5: Impact of each modality on action selection for two AudioGoal episodes.
We show one episode per row, and three sampled timesteps each. See Fig. 4.3 for legend.
Blue and green bars display the importance of vision and audio, respectively. Top: Initially,
the agent relies on audio to tell that the goal is on its left and decides to turn left. Later,
it uses vision to recognize obstacles in front of it and decides to turn right. Finally, the
agent decides to stop because the sound intensity has peaked. Bottom: Initially, the agent
decides to turn left, following the audio source. Then the agent uses vision to identify the
free space and decides to move forward. Later, the agent relies more on audio to decide to
turn right as it hears the target from the right.

to the goal based on the sound intensity. We run a variant of our model in which

the audio input consists of only the intensity of the left and right waveforms; the

audio CNN is removed, and the rest of the network in Fig 4.2 remains the same.

This simplified audio input allows the agent to readily learn to follow the intensity

gradient. The performance of the AudioGoal-Depth agent drops to an SPL of 0.291

and 0.014 showing that our model (SPL of 0.756 and 0.552 in Fig 4.4a) does indeed

learn additional environment information from the full spectrograms to navigate more

accurately.

We expect that the audio and visual input vary in their relative impact on the

agent’s decision making at any given time point, based on the environment context

and goal placement. To compute their impact, we ablate each modality in turn

by replacing it with its average training sample value, and compare the resulting

action probability under our model to that of the action chosen with both modalities.

We calculate the importance of each input modality using the absolute difference
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of logarithmic action probability, normalized by the sum of the two ablations. The

greater the change in the selected action, the more impact that modality had on

the learned agent’s actual choice. Fig. 4.5 shows examples of the AV impact scores

alongside the egocentric view of the agent at different stages in the trajectory. We

see the agent draws dynamically on either or both modalities to inform its motions

in the environment.

3: What is the effect of different sound sources? Next, we analyze the impact

of the sound source. First, we explore generalization to novel sounds. We divide the

102 sound clips into 73/11/18 splits for train/val/test, respectively. We train for

AudioGoal (AG) and AudioPointGoal (APG), then validate and test on disjoint val

and test sounds. In all cases, the test environments are unseen.

Table 4.3 shows the results. As we move left to right in the table, the sound

generalization task gets harder: from a single heard sound, to variable heard sounds,

to variable unheard sounds. Note, the non-learning baselines are unaffected by

changes to the audio and hence are omitted here. Our APG agents almost always

outperform the PointGoal agent, even for unheard test sounds, strengthening the

conclusions from Table 4.2. APG performs fairly similarly on heard and unheard

sounds, showing it has learned to balance all three modalities. On the other hand,

AG’s accuracy declines with varied heard sounds and unheard sounds. While it makes

sense that the task of following an unfamiliar sound is harder, we also expect that

larger training repositories of more sounds will resolve much of this decline.
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4.2 Learning to Set Waypoints for Audio-Visual Navigation

In the previous section, I introduced the audio-visual navigation benchmark,

where an embodied agents navigate in an unknown environment with audio-visual

inputs. What role should audio-visual inputs play in learning to navigate? There

are two existing strategies. The navigation policy previously introduced in Sec. 4.1

learns to generate step-by-step actions (TurnRight, MoveForward, etc.) based on

both modalities [35]. This has the advantage of unifying the sensing modalities, but

can be inefficient when learning to make long sequences of individual local actions.

The alternative approach separates the modalities—treating the audio stream as a

beacon that signals the goal location, then planning a path to that location using a

visual mapper [83]. This strategy has the advantage of modularity, but the disadvan-

tage of restricting audio’s role to localizing the target. Furthermore, both existing

methods make strong assumptions about the granularity at which actions should be

predicted, either myopically for each step (0.5 to 1 m) [35] or globally for the final

goal location [83].

We introduce a new approach for AudioGoal navigation where the agent in-

stead predicts non-myopic actions with self-adaptive granularity. Our key insight is

to learn to set audio-visual waypoints : the agent dynamically sets intermediate goal

locations based on its audio-visual observations and partial map—and does so in an

end-to-end manner with learning the navigation task. Intuitively, it is often hard to

directly localize a distant sound source from afar, but it can be easier to identify the

general direction (and hence navigable path) along which one could move closer to

that source. See Figure 4.6.

Both the audio and visual modalities are critical to identifying waypoints in an

unmapped environment. Audio input suggests the general goal direction; visual input

reveals intermediate obstacles and free spaces; and their interplay indicates how the

geometry of the 3D environment is warping the sounds received by the agent, such

that it can learn to trace back to the hidden goal. In contrast, subgoals selected using
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Figure 4.6: Waypoints for audio-visual navigation: Given egocentric audio-visual sen-
sor inputs (depth and binaural sound), the proposed agent builds up both geometric
and acoustic maps (top right) as it moves in the unmapped environment. The agent
learns encodings for the multi-modal inputs together with a modular navigation pol-
icy to find the sounding goal (e.g., phone ringing in top left corner room) via a series
of dynamically generated audio-visual waypoints. For example, the agent in the bed-
room may hear the phone ringing, identify that it is in another room, and decide to
first exit the bedroom. It may then narrow down the phone location to the dining
room, decide to enter it, and subsequently find it. Whereas existing hierarchical nav-
igation methods rely on heuristics to determine subgoals, our model learns a policy
to set waypoints jointly with the navigation task.

only visual input are limited to mapped locations or clear line-of-sight paths.

To realize our idea, our first contribution is a novel deep reinforcement learn-

ing approach for AudioGoal navigation with audio-visual waypoints. The model is

hierarchical, with an outer policy that generates waypoints and an inner module that

plans to reach each waypoint. Hierarchical policies for 3D navigation are not new,

e.g., [32, 262, 15, 26]. However, whereas existing visual navigation methods employ

heuristics to define subgoals, the proposed agent learns to set useful subgoals in an

end-to-end fashion for the navigation task. This is a new idea for 3D visual navigation

subgoals in general, not specific to audio goals. As a second technical contribution,

we introduce an acoustic memory to record what the agent hears as it moves, comple-

menting its visual spatial memory. Whereas existing models aggregate audio evidence

purely based on an unstructured memory (GRU), our proposed acoustic map is struc-

tured, interpretable, and integrates audio observations throughout the reinforcement

learning pipeline.
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We demonstrate our approach on the complex 3D environments of Replica

and Matterport3D using the SoundSpaces platform. It outperforms the AudioGoal

navigation policy introduced in Sec. 4.1.1 by a substantial margin (8 to 49 points

in SPL on heard sounds), and generalizes much better to the challenging cases of

unheard sounds, noisy audio, and distractor sounds. Our results show learning to set

waypoints in an end-to-end fashion outperforms current subgoal approaches, while

the proposed acoustic memory helps the agent set goals more intelligently.

4.2.1 Approach

We consider the previously introduced AudioGoal navigation task (Sec. 4.1).

In this task the agent moves within a 3D environment and receives a sensor observa-

tion Ot at each time step t from its camera (depth) and binaural microphones. The

environment is unmapped at the beginning of the navigation episode; the agent has to

accumulate observations to understand the scene geometry while navigating. Unlike

the common PointGoal task, for AudioGoal the agent does not know the location of

the goal (i.e., no GPS signal or displacement vector pointing to the goal is available).

The agent must use the sound emitted by the audio source to locate and navigate

successfully to the goal.

We introduce a novel navigation approach that predicts intermediate way-

points to reach the goal efficiently. Our approach is composed of three main modules

(Fig. 4.7). Given visual and audio inputs, our model 1) encodes these cues using a

perception and mapping module, then 2) predicts a waypoint, and finally 3) plans and

executes a sequence of actions that bring the agent to the predicted waypoint. The

agent repeats this process until it predicts the goal has been reached and executes

the Stop action.
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Figure 4.7: Model architecture. Our audio-visual navigation model uses the ego-
centric stream of depth images and binaural audio (Bt) to learn geometric (Gt) and
acoustic (At) maps for the 3D environment. The multi-modal cues and partial maps
(left) inform the RL policy’s prediction of intermediate waypoints (center). For each
waypoint, the agent plans the shortest navigable path (right). From this sequence of
waypoints, the agent reaches the final AudioGoal efficiently.

4.2.1.1 Perception and Mapping

Visual perception At each time step t, we extract visual cues from the agent’s first-

person depth view, which is more effective for map construction than RGB [32, 48].

First, we backproject the depth image into the world coordinates using the camera’s

intrinsic parameters to compute the local scene’s 3D point cloud. Then, we project

these points to a 2D top-down egocentric local occupancy map Lt of size 3×3 meters

in front of the agent, corresponding to the typical distance at which the real-world

sensor is reliable. The map has two channels, one for the occupied/free space and

one for explored/unexplored areas. A map cell is deemed occupied if it has a 3D

point that is higher than 0.2m and lower than 1.5m, and it is deemed explored if any

3D point is projected into that cell (results are tolerant to noisy depth. We update

an allocentric geometric map Gt by transforming Lt with respect to the agent’s last

pose change and then averaging it with the corresponding values of Gt−1. Cells with

a value above 0.5 are considered occupied or explored. See top branch in Figure 4.7.

Acoustic perception At each time step the agent receives binaural sound Bt rep-
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resented by spectrograms for the right and left ear, a matrix representation of fre-

quencies of audio signals as a function of time (second branch in Figure 4.7). Beyond

encoding the current sounds, we also introduce an acoustic memory. The acoustic

memory is a map At indexed on the ground plane like Gt that aggregates the audio in-

tensity over time in a structured manner. It records a moving average of direct sound

intensity solely at positions visited by the agent. See the third branch in Figure 4.7.

Note that a map of audio intensities reveals both distance and directional information

about the sound source, since the gradient in audio intensity helps indicate the goal

direction. The acoustic map and Bt provide spatially grounded information about

both the environment and the goal: the walls and other major surfaces influence the

sound received by the agent at any given location, while the sound source at the goal

gives a coarse sense of direction when the agent is far away. This directional cue gets

increasingly precise as the agent approaches the goal.

4.2.1.2 Audio-Visual Waypoint Predictor

Both the audio and visual inputs carry complementary information to set good

waypoints en route to the audio goal. While the audio signals Bt (binaural inputs) and

At (acoustic memory) inform the agent of the general direction of the goal and hint

at the room geometry, the visual signal in the form of the occupancy map Gt allows

spatial localization of the waypoint and helps to avoid obstacles. Recall Figure 4.6,

where the agent in the bedroom needs to reach a phone ringing in another room.

We learn three encoders to represent the inputs: gt = fg(Gt), bt = fb(Bt) and

at = fa(At). Functions fg and fa first transform the geometric and acoustic maps

(Gt and At) such that the agent is located at the center of the map facing upwards

and then crop them to size sg × sg and sa × sa, respectively. Each function has a

convolutional neural network (CNN) in the end to extract features.

We concatenate the three vectors gt, bt and at to obtain the full audio-visual

feature, and pass it into a gated recurrent neural network (GRU) [52]. See Figure 4.7.
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Our reinforcement learning waypoint predictor has an actor-critic architec-

ture. It takes the hidden state ht of the GRU and predicts a probability distribution

π(Wt|ht) over possible waypoints. Wt is the action map of size sw×sw and represents

the candidate waypoints in the area centered around the agent.§ off the RIR grid.

We mask the output of the policy with the local occupancy map to ensure that the

model selects waypoints that are in free spaces. We sample a waypoint wt = (∆x,∆y)

from Wt according to the policy’s predicted probability distribution. The waypoint is

relative to the agent’s current position and is passed to the planner (see Sec. 4.2.1.3).

This waypoint policy is an important element in our method design. It allows

the agent to dynamically adjust its intermediate goals according to what it currently

sees and hears. Unlike existing AV navigation methods, our waypoints guide the agent

at a variable granularity, as opposed to fixing its actions to myopic next steps [35]

or a final goal prediction [83]. Unlike existing visual subgoal approaches, which rely

on frontier-based heuristics or points along the shortest path [32, 262, 15, 26], our

waypoints are inferred in tight integration with the navigation task. Our results

demonstrate the advantages.

4.2.1.3 Path Planner

Given the generated waypoint wt, a shortest-path planner tries to generate a

sequence of low-level actuation commands chosen from A to move the agent to that

waypoint. The planner maintains a graph of the scene based on the geometric map

Gt and estimates a path from the agent’s current location to wt using Dijkstra’s algo-

rithm. Unexplored areas in the map are considered free space during planning [32].

Based on the shortest path, a low-level actuation command is analytically computed.

The agent executes the action, gets a new observation Ot, updates both Gt and At,

and repeats the above procedure until it exits the planning loop.

§The environment graphs have nodes only where the SoundSpaces audio RIRs are available, and hence both
actions and candidate waypoints are discrete sets. Note: this disallows testing noisy actuation for any method
because audio observations are not available at positions
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The planning loop breaks under three conditions: 1) the agent reaches the

waypoint, 2) the planner could not find a path to the waypoint (in this case the agent

executes a random action before breaking the loop), or 3) the agent reaches a planning

step limit. The planning step limit is set to mitigate bad waypoint prediction (due

to noisy occupancy estimates) or hard-to-reach waypoints (like behind the wall of

another room) from derailing the agent from the goal. If the model selects wt = (0, 0)

(i.e., the agent’s current location), this means that the agent believes it has reached

the final goal; the Stop action is then executed and the episode terminates.

4.2.1.4 Reward and Training

Following typical navigation rewards [247, 35], we reward the agent with +10 if

it succeeds in reaching the goal and executing the Stop action there, plus an additional

reward of +0.25 for reducing the geodesic distance to the goal and an equivalent

penalty for increasing it. Finally, we issue a time penalty of −0.01 per executed action

to encourage efficiency. For each waypoint prediction step, the agent is rewarded with

the cumulative reward value collected during the last round of planner execution.

Altogether, the reward encourages the model to select waypoints that are reachable,

far from the current agent position, and on the route to the goal—or to choose the

goal itself if it is within reach.

All learnable modules are jointly trained and updated every 150 waypoint

prediction steps with Proximal Policy Optimization (PPO) [254]. The PPO loss

consists of a value network loss, policy network loss, and an entropy loss to encourage

exploration.

4.2.2 Experiments

Environments Following the protocol in Sec. 4.1, we use both Replica and Matter-

port environments, and train/test on disjoint environments to evaluate generalization.

Metrics We evaluate the following navigation metrics: 1) success rate (SR), the frac-
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tion of successful episodes, i.e., episodes in which the agent stops exactly at the audio

goal location on the grid; 2) success weighted by path length (SPL), the standard

metric [8] that weighs successes by their adherence to the shortest path; 3) success

weighted by number of actions (SNA), which penalizes rotation in place actions, which

do not lead to path changes.

Existing methods and baselines We compare the following methods:

• Random: an agent that randomly selects each action and signals Stop when it

reaches the goal.

• Direction Follower: a hierarchical model that sets intermediate goals K me-

ters away in the audio’s predicted direction of arrival (DoA), and repeats. K is

estimated through a hyperparameter search on the validation split, which yields

K = 2 in Replica and K = 4 in Matterport. We train a separate classifier based

on audio input to predict when this agent should stop.

• Frontier Waypoints: a hierarchical model that intersects the predicted DoA

with the frontiers of the explored area and selects that point as the next way-

point. Frontier waypoints are commonly used in the visual navigation literature,

e.g., [26, 262, 32], making this a broadly representative baseline for standard

practice.

• Supervised Waypoints: a hierarchical model that uses the RGB frame and

audio spectrogram to predict waypoints in its field of view (FoV) with supervised

(non-end-to-end) learning. This model is inspired by Bansal et al. [15], which

learns to predict waypoints in a supervised fashion.

• AV-Nav (see Sec. 4.1.1): a state-of-the-art end-to-end AudioGoal RL agent

that selects actions using audio-visual observations. It lacks any geometric or

acoustic maps.
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Table 4.4: AudioGoal navigation results. Our audio-visual waypoints navigation
model (AV-WaN) reaches the goal faster (higher SPL) and it is more efficient (higher
SNA) compared to the state-of-the-art. SPL, SR, SNA are shown as percentages. For
all metrics, higher is better. (H) denotes a hierarchical model.

Replica Matterport3D
Heard Unheard Heard Unheard

Model SPL SR SNA SPL SR SNA SPL SR SNA SPL SR SNA

Random Agent 4.9 18.5 1.8 4.9 18.5 1.8 2.1 9.1 0.8 2.1 9.1 0.8
Direction Follower (H) 54.7 72.0 41.1 11.1 17.2 8.4 32.3 41.2 23.8 13.9 18.0 10.7
Frontier Waypoints (H) 44.0 63.9 35.2 6.5 14.8 5.1 30.6 42.8 22.2 10.9 16.4 8.1
Supervised Waypoints (H) 59.1 88.1 48.5 14.1 43.1 10.1 21.0 36.2 16.2 4.1 8.8 2.9
Gan et al. 57.6 83.1 47.9 7.5 15.7 5.7 22.8 37.9 17.1 5.0 10.2 3.6
AV-Nav 78.2 94.5 52.7 34.7 50.9 16.7 55.1 71.3 32.6 25.9 40.1 12.8
AV-WaN (Ours) (H) 86.6 98.7 70.7 34.7 52.8 27.1 72.3 93.6 54.8 40.9 56.7 30.6

• Gan et al. [83]: a state-of-the-art AudioGoal agent that predicts the audio goal

location from binaural spectrograms alone and then navigates with an analytical

path planner on an occupancy map it progressively builds by projecting depth

images. It uses a separate audio classifier to stop. We adapt the model to

improve its performance on Replica and Matterport, since the authors originally

tested on a game engine simulator.

Navigation results We consider two settings: 1) heard sound—train and test on

the telephone sound, following [35, 83], and 2) unheard sounds—train and test with

disjoint sounds, following [35]. In both cases, the test environment is always unseen,

hence both settings require generalization.

Table 4.4 shows the results. We refer to our model as AV-WaN (Audio-Visual

Waypoint Navigation). Random does poorly due to the challenging nature of the

AudioGoal task and the complex 3D environments. For the heard sound, AV-WaN

strongly outperforms all the other methods—with 8.4% and 29% SPL gains on Replica

compared to AV-Nav and Gan et al., and 17.2% and 49.5% gains on Matterport. This

result shows the advantage of our dynamic audio-visual waypoints and structured

acoustic map, compared to the myopic action selection in AV-Nav and the final-goal
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(a) Gan et al. [83] (b) Chen et al. [35] (c) AV-WaN

Figure 4.8: Navigation trajectories on top-down maps vs. all existing AudioGoal
methods. Agent path fades from dark blue to light blue as time goes by. Green is
the shortest geodesic path in continuous space. All agents have reached the goal.
Our waypoint model navigates to the goal more efficiently. The agent’s inputs are
egocentric views (Fig. 1); figures show the top-down view for ease of viewing the full
trajectories.

prediction in Gan et al. We find that the RL model of AV-Nav fails when it oscillates

around an obstacle. Meanwhile, predicting the final audio goal location, as done by

Gan et al., is prone to errors and leads the agent to backtrack or change course often

to redirect itself towards the goal. This result emphasizes the difficulty of the audio-

visual navigation task itself; simply reducing the task to PointGoal after predicting

the goal location from audio (as done in Gan et al.) is much less effective than the

proposed model. See Figure 4.8.

Our method also surpasses all three other hierarchical models. This highlights

our advantage of directly learning to set waypoints, versus the heuristics used in

current hierarchical visual navigation models. Even the Supervised Waypoints model

does not generalize as well to unseen environments as AV-WaN. We expect this is

due to the narrow definition of the optimal waypoint posed by supervision compared

to our model, which learns from its own experience what is the best waypoint for the

given navigation task in an end-to-end fashion.

In the unheard sounds setting covering 102 sounds (Table 4.4, right), our

method again strongly outperforms all existing methods on both datasets and in

almost every metric. The only exception is our 2.8% lower SPL vs. AV-Nav on
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Table 4.5: Ablation study for AV-WaN. Results are averaged over 5 test runs; all
standard deviations are ≤ 0.5.

Replica Matterport3D
Heard Unheard Heard Unheard

Model SPL SR SNA SPL SR SNA SPL SR SNA SPL SR SNA

AV-WaN w/o At and Gt 84.3 97.8 69.1 34.0 48.6 25.4 68.8 92.1 52.1 20.5 30.4 15.5
AV-WaN w/o Gt 85.1 97.5 69.0 27.0 45.6 20.3 70.2 94.0 52.4 25.4 45.0 19.2
AV-WaN w/o At 85.7 98.7 70.2 34.5 63.3 24.8 70.2 93.6 53.2 36.7 53.8 28.6
AV-WaN w/o waypoints 79.8 95.5 48.4 25.5 38.2 10.6 44.3 63.2 20.3 25.5 40.0 11.0
AV-WaN 86.6 98.7 70.7 34.7 52.8 27.1 72.3 93.6 54.8 40.9 56.7 30.6

Replica, though our model still surpasses AV-Nav in terms of SNA on that dataset,

meaning we have better accuracy when normalizing for total action count. Absolute

performance declines for all methods, though, due to the unfamiliar audio spectrogram

patterns. The acoustic memory is critical for this important setting; it successfully

abstracts away the specific content of the training sounds to better generalize.

Ablations Table 4.5 shows ablations of the input modalities and the audio-visual

waypoint component of our model.¶ Removing both the geometric and acoustic

maps causes a reduction in performance. This is expected since without At and Gt,

the model has only the current audio observation Bt to predict the next waypoint.

Notably, even this heavily ablated version of our model outperforms the best existing

model [35] (see Table 4.4). This shows that our waypoint-based navigation frame-

work itself is more effective than the simpler RL model [35], as well as the existing

subgoal approaches. Removing just At also leads to a drop in performance, which

demonstrates the importance of the proposed structured acoustic memory for efficient

navigation. Both At and Gt are complementary and critical for our model to reach

its best performance. Finally, we evaluate the impact of our idea of audio-visual

waypoint prediction.

We replace the actor network in our model (see Fig. 4.7 middle) with a linear

¶When Gt is removed, we remove the masking operation to ensure no geometric information is used as input,
but we keep the geometric map for the planner.
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(a) Waypoint distance distri-
bution

(b) Audio noise (c) Waypoint placement dis-
tribution

Figure 4.9: Analysis of selected waypoints (a,c) and accuracy vs. microphone noise
(b). See text.

layer that outputs the action distribution over the four primitive actions in A. An

action sampler directly samples an action from this distribution and executes it in the

environment. In this case, there is no need for a planner. Our gains over that ablation

confirm the value of the waypoints to our model, even when all other components are

fixed.

Failure cases We next analyze the unsuccessful episodes for our model. We identify

two repeating types of failures among these episodes. The first is where the audio

goal is cornered among obstacles or lies right next to a wall. In this case, while

AV-WaN reaches the goal quickly, it keeps oscillating around it and fails to pinpoint

the location of the goal due to strong audio reflections from the obstacles around the

goal or due to mapping errors. In the second case, we notice that sometimes the

agent prematurely executes a stop action next to the audio goal. We expect that the

differences in the audio intensity in the immediate neighborhood of the goal where

the sound is the loudest are harder to detect, which may lead to this behavior.

Noisy audio and distractor sounds To understand the robustness of our model

under noisy audio perception, we consider two sources of audio noise: environment

noise and microphone noise. For environment noise, we add distractor sounds (e.g.

human speaking, fan spinning) to interfere with the agent’s audio perception. The

agent is always tasked to find the telephone, and the distractor is an unheard sound
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placed at a random location. At each time step, the agent receives the combined

waveforms of two sounds and needs to pick up on the telephone signal and find its

source location. We use the same episodes from the Heard experiment (Table 4.4) to

train and evaluate the agent. With distractors, the best performing baseline, AV-Nav,

obtains 71.7% and 53.3% test SPL on Replica and Matterport respectively, while our

model achieves 83.1% and 70.9%. For microphone noise, we add increasing Gaussian

noise to the received audio waveforms. Fig. 4.9b shows the results. AV-WaN is quite

robust to audio noise, especially with At, while the existing AudioGoal methods suffer

significantly. Hence our model’s advantages persist in noisier settings common in the

real world, and the acoustic memory is essential in this noisy setting.

Dynamic waypoint selection Fig. 4.9a plots the distribution of euclidean distances

to waypoints as a function of the agent’s geodesic distance to the goal. We see that

our agent selects waypoints that are further away when it is far from the goal, then

predicts closer ones when converging on the goal.

Placement of waypoints To examine how waypoints are selected based on sur-

rounding geometry, Fig. 4.9c plots the distribution of waypoints on a top-down map

for a test Replica environment. The waypoints are accumulated over trajectories with

start or end points in room a or room c, and goal locations are excluded. We see way-

points are mostly selected around obstacles and doors, which are the decision states

that lie at critical junctions in the state spaces from which the agent can gather the

most new information and transition to new, potentially unexplored regions [104].

The most frequent waypoints are usually 2-3m apart, close to the maximum distance

the agent can choose.

4.3 Continuous Audio-Visual Navigation in SoundSpaces 2.0

In previous sections, I presented both the original audio-visual navigation task

formulation and an efficient hierarchical policy to improve the performance. However,

due to its reliance on SoundSpaces, audio-visual navigation thus far must assume the
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Table 4.6: Continuous audio-visual navigation benchmark. DTG stands for distance
to goal. We report the mean and standard deviation by training on 1 random seed,
and evaluating on 3 random seeds.

Train Test Success (%) SPL (%) DTG (m)

SoundSpaces [35] Continuous space 64.2 ± 0.8 27.5 ± 0.4 5.6 ± 0.2

SoundSpaces [35] Continuous space & continuous sound 0.9 ± 0.2 0.3 ± 0.1 12.9 ± 0.1

SoundSpaces 2.0 Continuous space & continuous sound 64.7 ± 3.9 49.3 ± 3.0 5.9 ± 0.5

agent travels along the discrete grid. The navigation task is thus easier due to the

lack of collisions and implied perfect localization.

Here we introduce the continuous audio-visual navigation task, enabled by

SoundSpaces 2.0 simulation. In this task, the agent can choose to either move forward

0.15 m per step at a speed of 1m/s or turn left/right 10 degrees. However, these

actions might fail or be partially executed due to collisions, while previously, the

agent always teleports to the next location. If the agent issues a stop action within

1m radius of the goal, the episode is regarded as successful. Importantly, the agent

not only moves in continuous space but also receives acoustically continuous audio

signals (cf. Sec. 3.2.1.2). We use the high-speed rendering mode.

We generalize the existing audio-visual navigation policy AV-Nav (introduced

in Sec. 4.1.1) to a distributed audio-visual navigation (DAV-Nav) agent equipped

with DD-PPO [302] to speed up the training process. We train and test on the

AudioGoal navigation dataset [35]. To ablate the simulation improvement as detailed

in Sec. 3.2.1.1, for the SoundSpaces baseline, we train DAV-Nav on SoundSpaces’

discrete setup (agent only moving between grid points) with data rendered from the

enhanced simulation; the action space is either moving forward 1 m, turning left/right

90 degrees or issuing a stop action.

Table 4.6 shows the results using the standard metrics of success rate, success

rate normalized by path length (SPL), and distance to goal. If only the space is

continuous, the DAV-Nav agent trained on SoundSpaces has 64.2% success rate and

27.5% SPL on average compared to 64.7% success rate and 49.3% SPL of the agent
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trained on SoundSpaces 2.0. This shows spatial continuity mostly harms the agent’s

efficiency rather than its success rate; the agent can still navigate to the source despite

having more collisions. However, when the sound is acoustically continuous, the base-

line’s performance drops. This is likely because the agent relies on the direct-sound

cue that is (inaccurately) always present in the audio, while in the continuous-sound

rendering, direct sound is always mixed with the reverberation in the environment,

making navigation more difficult. In comparison, the agent trained on SoundSpaces

2.0 achieves a much higher success rate and is much closer to the goal location on

average. This shows it is essential to model both spatial and acoustic continuity for

audio-visual navigation, which SoundSpaces 2.0 enables. Furthermore, recall that

SoundSpaces 2.0 opens up any other 3D scene dataset for exploring audio-visual nav-

igation, whereas previously only Replica or Matterport3D were applicable.

4.4 Sim2Real Transfer with Frequency-Adaptive Acoustic Field
Prediction

In previous sections, I introduced multiple navigation policies that enable

audio-visual navigation on both SoundSpaces 1.0 and SoundSpaces 2.0. However, the

question of how to transfer the policy from the simulation to the real world remains

unresolved. In this section, I introduce a frequency-adaptive method for sim2real

transfer.

With the success of learning-based navigation systems in photorealistic simula-

tion environments, some work explores transferring the learned policy to the real world

by bridging the gap between the simulation and the real world [324, 10, 218, 135].

Recent work [92] does sim2real transfer for audio-visual navigation with data aug-

mentation however without further investigating the acoustic gap. The sound differs

from light in that it spans a wide range of frequencies, which is one of the main bar-

riers to sim2real transfer. In this section, we perform a systematic evaluation of the

acoustic gap and propose a solution to bridge that gap.
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Figure 4.10: Our robot predicts an acoustic field with a frequency-adaptive model
and navigates to locate the sound source.

State-of-the-art approaches in audio-visual navigation rely on reinforcement

learning to train the navigation policy end-to-end [34, 36], which is not only hard to

interpret but also impractical to generalize to the real world directly due to various

sim2real gaps. Recent visual navigation work has shown success in sim2real transfer

with hierarchical models [10, 229], which typically consist of a high-level path planner

and low-level motion planner. This design helps abstract away some of the low-level

physical discrepancies.

Inspired by such methods, we design a modular approach to ease the transfer

from the simulation to the real world. To achieve this, we confront a key question:

what is the proper high-level planning task that can survive sim2real transfer for

audio-visual navigation? To this end, we propose a novel prediction task: acoustic

field prediction—predicting the local sound pressure field around the agent. The

gradient of this field reflects the direction of the sound. Measuring acoustic fields

is expensive in the real world since it requires simultaneously capturing the sound
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pressure of all points in the field due to the dynamic nature of sound. However, they

are free to compute in simulation. We first build an audio-visual model as the acoustic

field predictor (AFP) and curate a large-scale acoustic field dataset on SoundSpaces

2.0 (see Chapter 9). We show that this approach outperforms existing methods on

the Continuous AudioGoal navigation benchmark.

After validating the proposed approach in simulation, we then investigate

where acoustic discrepancy arises. It is known that ray-tracing-based acoustic simula-

tion algorithms introduce more errors with lower frequencies due to wave effects [245].

Given this observation, we focus on evaluating how the sim2real error changes as a

function of frequencies. We first collect real acoustic field data with the source sound

being white noise, whose audio energy uniformly spans across all frequencies. We then

train acoustic field prediction models that only take the sub-frequency band of the

input audio and test it on the real white noise data. By computing the errors across

multiple samples, we show that the errors do not strictly go down as the frequency

goes higher, and using the best frequency band yields errors smaller than using all

frequencies for the white noise sound.

However, simply taking the best frequency band does not work for all sounds

since different sounds have different spectral distributions. To address this issue

and make the model aware of the spectral difference, we propose a novel frequency-

adaptive prediction strategy, that intelligently selects the best frequency sub-band

based on measured errors as well as the received spectral distribution to predict the

acoustic field. To validate this approach, we collect more acoustic field data with

various sounds and show that the frequency-adaptive model leads to the lowest error

on the real data compared to other strategies.

Lastly, we build a robot platform that equips the Hello Robot with a 3Dio

binaural microphone and then deploy our trained policy on this robot. We show that

our robot can successfully navigate to various sounds with our trained frequency-

adaptive acoustic field prediction model. See Fig. 4.10.
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In summary, we propose a novel acoustic field prediction approach that learns

to navigate without interaction with the environment. This approach improves the

SOTA methods on the challenging Continuous AudioGoal navigation benchmark.

We perform a systematic evaluation of the sim2real and propose a frequency-adaptive

strategy as the treatment for sim2real. We show this strategy works on both collected

real data and our robot platform. To the best of our knowledge, this is the first work

to investigate and propose a principal solution to the sim2real transfer problem for

audio-visual navigation.

4.4.1 Approach

In this work, we use the SoundSpaces 2.0 platform introduced in Chapter 3

and target the continuous AudioGoal navigation benchmark introduced in Sec. 4.3.

4.4.1.1 A Modular Design for Sim2real Transfer

Transferring a navigation policy trained in simulation to the real world is not

trivial due to many domain gaps between the simulation environment and the real

world, which include the visual discrepancy, the physical dynamics discrepancy, the

robot actuation discrepancy and—specifically in this task—the acoustic discrepancy.

We focus on investigating the acoustic discrepancy and to bridge other domain

gaps (e.g., visuals and physics), we take a hierarchical approach that disentangles

navigation into high-level path planning and low-level motion planning. This has a

few benefits: 1) disentangling the policy makes it possible to utilize existing SLAM

algorithms on the real robot to abstract away domain gaps other than the audio. 2)

disentangling the policy makes the intermediate output more interpretable and easier

to debug 3) specifically in this work, posing the high-level planning as a supervised

prediction task makes it easier to measure the sim2real difference because we can

evaluate the performance by collecting real measurements without repeatedly running

robots.

The key challenge here is to formulate the proper waypoint prediction task
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Figure 4.11: Acoustic field prediction model. The model first extracts audio and
visual features, and then tiles and concatenates both features to predict the acoustic
field.

that could survive the sim2real transfer. One existing approach [83] predicts the exact

location of the audio goal directly, which is however an ill-posed problem since the

environment geometry is unknown. For example, when the audio goal is in another

room, the received audio reveals the direction to the door rather than the exact

direction of the goal. We propose to predict the local acoustic field (sound pressure

field) centered around the agent. Collecting acoustic field data for training is very

expensive in the real world since it requires a complicated microphone array setup.

However, rendering them in simulation is nearly free.

The hierarchical model alone however does not address the audio discrepancy

directly. While SoundSpaces 2.0 produces realistic audio renderings, there is some

unavoidable difference between simulation and the real world. It is known that ray-

tracing-based algorithms yield worse performance with lower frequencies due to wave

effects [245]. This implies the model needs to be aware of this spectral difference

for sim2real. Thus we introduce a frequency-adaptive prediction strategy to help the

model better transfer to the real world in Sec. 4.4.1.4.
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4.4.1.2 Acoustic Field Prediction

To tackle the acoustic field prediction problem, we first present a model that

uses both audio and visual observations (see Fig. 4.11). The motivation behind using

the visual sensor is that the visual observation of the surrounding environment can be

useful in inferring the geometry of the environment, which affects the acoustic field.

For example, walls often act as the boundary of the acoustic field.

More specifically, the model takes in a depth image of 128×128 pixels. We use

depth image instead of RGB image because it contains 3D information of the scene

and tends to yield better performance [117, 24, 75]. The input audio to the model is

a one-second segment of binaural audio, following prior work [34].

We use a pre-trained ResNet [115] to extract features from the input image

and reshape it with a 1 × 1 Conv layer into a 1d vector of size 512. For the input

binaural audio, we first process the waveforms with Short-Time Fourier Transform

(STFT) to convert the time-domain signal into the frequency domain. We then use

a 2D Conv net to encode the features and then tile and concatenate with the visual

feature. Lastly, we feed the final output through one linear layer and reshape the

prediction into the size of the target acoustic field L× L.

4.4.1.3 Hierarchical Navigation

With this acoustic field prediction model, we then construct a hierarchical

navigation pipeline (see Fig. 4.12) to perform audio-visual navigation, which executes

the following steps: 1) sampling a long-term goal; 2) navigating to the long-term goal;

and 3) making the stopping decision. Different from the hierarchical policy AV-WaN

I introduced earlier in 4.2, the long-term goal in this pipeline is produced by the

acoustic field predictor model while AV-WaN produces the long-term waypoint with

a reinforcement learning policy.

Sampling a Long-Term Goal At each time step, the agent predicts the acoustic

field based on audio-visual inputs and then identifies the maximum value of the field.
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Figure 4.12: Navigation pipeline. The model first predicts the acoustic field, samples
the peak as the long-term goal, and navigates toward the goal with a path planner.

We set the peak location as the long-term goal either when there is no existing long-

term goal or the new peak value surpasses the value of the existing long-term goal

since as the agent gets closer to the goal, the sound usually gets louder.

Navigating to the Long-Term Goal After sampling the long-term goal, for path

planning, we use the Fast Marching Method (FMM) [256] to determine the best

route to the goal in simulation. FMM takes the occupancy map, the agent’s current

position, and the long-term goal as inputs. The occupancy map is computed by

calculating the point cloud observed at each timestep using the depth camera. Next,

FMM calculates the distance between each navigable point in the map to the long-

term goal. The algorithm then selects the adjacent point on the map with the lowest

value as its short-term goal and the agent then moves towards that point. When the

long-term goal is sampled at a non-navigable location, we use breadth-first search

(BFS) to find the closest available point to navigate to.
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Stopping Criteria The stopping condition is evaluated each time after the agent

reaches a long-term goal or the closest navigable point to the long-term goal. When

the agent samples a new long-term goal, if the peak value of the predicted acoustic

field is at the center of the field, the agent issues the stop action.

4.4.1.4 Frequency-adaptive Prediction

Existing audio-visual navigation models use all frequencies in the input audio.

However, as discussed earlier, the acoustic gap with the real world is a function of

frequencies. Thus models trained with all frequencies assuming them equally reliable

would have lower performance when deployed on a real robot.

Given this observation, we first systematically examine how the gap changes as

a function of the frequency. The idea is simple: with a given frequency band [F1, F2],

we first train an acoustic field prediction (AFP) model in simulation using only that

band, then test it on real-world data of the same sound and same band, and calculate

the prediction error. We equally divide all frequencies into 5 subbands and we show

the distribution of errors over the frequency bands in Fig. 4.13. As expected, the

lower frequencies tend to yield larger prediction errors. However, the error does not

monotonically decrease as frequency increases. We also trained a model that uses all

frequencies, which has a distance error of 0.86m, underperforming the best frequency

band.

With this measurement, the most intuitive idea would be just to take the

frequency band that has the least sim2real error and train a model with that band.

However, this will not work for real-world scenarios where some sounds span across

many frequency bands while others only occupy a very narrow range of frequencies. To

take that into account, we propose a frequency-adaptive prediction strategy that uses

the best frequency band based on both the measured error and the energy distribution

of the received audio.

Assume we divide all frequencies linearly into N bands. Given a received audio
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Figure 4.13: Sim2real error as a function of frequencies. We report the mean and
standard deviation of distance errors between the predicted and the ground truth
peak locations.

Ar, we first convert it into the frequency domain and divide it into these N bands.

Based on the measured errors, we have a weighting function that assigns weights to

these bands based on their sim2real errors:

p(i) = (
1

ei
)α, i ∈ [1, ..., N ], (4.1)

where ei is the error in Fig. 4.13. For each subband i of the input, we then compute

another weight based on the energy of the band normalized with respect to the highest

energy:

q(i) = (
ri
rm

)β, i ∈ [1, ..., N ], (4.2)

where ri is the energy of that band and rm = maxi ri. We basically assign higher

weights to frequency bands that have more energy. Lastly, we take the product of

these weights:

w(i) = p(i) × q(i), i ∈ [1, ..., N ] (4.3)

We take band i with the highest w(i) to produce the final prediction. Both α and

β are hyper-parameters, and we perform a grid search to find the best values on

validation.

Intuitively, what the weighting function does in eq. (4.3) is: if the input sound

has a fairly equal distribution of energies over all subbands, it will take the best band
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from p(i) that has the lowest sim2real error. If the input sound has a very skewed

energy distribution, it will prioritize taking the band where the audio has the most

energy. In this way, we factor into both the measured difference and the spectral

distribution of individual sounds.

4.4.1.5 Implementation and Training Details

For the size of the acoustic field, we set L to 9 with a grid resolution of 0.5m,

i.e., 4.5m× 4.5m centered around the agent based on our ablations. α and β are set

to 5 and 0.8 respectively based on the validation performance.

We train the predictor with Mean Squared Error (MSE) loss till convergence.

For optimization, we use the Adam optimizer [143] with a learning rate set of 0.001.

4.4.2 Data Curation

Due to the expense of measuring real acoustic field data, we choose to utilize

simulation to collect large-scale training data. We also collect real data for measuring

the sim2real gap and validating our frequency-adaptive prediction model.

4.4.2.1 SoundSpaces Acoustic Field Dataset

SoundSpaces 2.0 (see Chapter 3) supports computing the impulse response

I(s, r) between the source location s and the receiver location r as a function of the

3D environment but does not have direct API support for rendering the acoustic field.

To compute the field, given a (s, r) pair, we first sample a grid centered at the receiver

location of size L × L, for each grid point p, we compute I(s, p) which results in L2

number of RIRs per receiver location. However, these RIRs are represented in the

form of waveforms instead of single numbers. To best represent the sound pressure

at each single point, we take the maximum amplitude of the waveform.

For sampling the S/R locations and environments, we utilize the existing

dataset for audio-visual navigation, which provides configurations of the environ-
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ment and source/receiver locations. This dataset uses scenes from the Matterport3D

dataset [29], which contain scans of real-world environments such as apartments,

offices, and even churches. We sample 500 episodes per environment for the 57 train-

ing environments in the navigation dataset. We also perform a similar operation to

curate the validation and test set. In total, we collect 1.1M/52K/52K samples for

train/val/test. Along with these acoustic fields, we also render the RGB-D images at

the corresponding locations. See examples in Fig. 4.15.

4.4.2.2 Real Measurements Collection

To measure the sim2real error, we collect real audio measurements to evaluate

the trained model’s performance. For that, we use a 3Dio microphone to capture

the binaural audio with a smartphone serving as the speaker output. We aligned

the real-world parameters closely with those in our simulator, such as the height of

the speaker and receiver. Since the simulator employs a mono receiver, the two-

channel audio data we gathered is transformed into mono format by averaging the

amplitude values across both channels. This process was repeated for ten distinct

speaker positions (8 different directions w.r.t the agent and two data points for when

the speaker is near the agent). We also downsample the acoustic field resolution from

9 × 9 to 3 × 3 so that we could collect more data in more environments.

For the source of the sounds, we use two types of sounds: white noise and

normal sounds. To compute the sim2real errors in Fig. 4.13, it is important for the

sound to have uniform distribution across all frequencies, and we use white noise for

that. For evaluating the final frequency-adaptive acoustic-field prediction model, we

choose 7 unheard sounds that have varying spectral distributions and play them as

the source. For each sound, we collect 10 data points. We split them equally into

validation and test for hyperparameter searching.
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SR ↑ SPL ↑ Soft SPL ↑
Random 0.01 0.07 0.12

DDPPO [302] 0.82 0.63 0.66
Direction Follower [37] 0.67 0.50 0.48

Beamforming [160] 0.02 0.01 0.24
Gan et al. [83] 0.63 0.53 0.68

AFP w/ predicting max 0.54 0.34 0.38
AFP w/o vision 0.84 0.71 0.72

AFP (Ours) 0.91 0.76 0.75

Table 4.7: Results of the AudioGoal navigation experiment and our model strongly
outperforms existing methods.

4.4.3 Robot Platform

To deploy our sim2real policy on a real robot, we build our own audio-visual

robot by equipping a HelloRobot with a 3Dio binaural microphone as shown in

Fig. 4.10. We use Focusrite Scarlett Solo as the audio interface to amplify the audio

signals from the binaural microphone.

To start the navigation, we first sample the current audio from the microphone

and predict the long-term goal from the acoustic field. We then pass this goal to the

robot and use HelloRobot’s navigation stack to move the robot towards the goal.

Once the robot reaches the long-term goal, it comes to a complete stop for a second

to sample the audio again. This process is repeated until the predicted goal location

is in the center of the acoustic field. If the sampled long-term goal is in an inaccessible

region, we have a time limit of 5 seconds after which the robot stops and samples a

new goal.

4.4.4 Experiments

For experiments, I first show the results on the continuous AudioGoal naviga-

tion benchmark in Sec. 4.4.4.1, then the acoustic field prediction on real measurements

in Sec. 4.4.4.2, and lastly the real navigation results in Sec. 4.4.4.3.
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4.4.4.1 Results on Continuous AudioGoal Navigation Benchmark

We first demonstrate the effectiveness of our navigation system on the chal-

lenging Continuous AudioGoal navigation benchmark (see Sec. 4.3), where the agent

moves in a continuous unseen environment to find the location of a ringing telephone

sound. For metrics, we use the common Success Rate (SR), success weighted by

inverse path length (SPL), and soft SPL. An episode is considered successful when

the agent issues the stop action within 1 meter of the goal. SPL [17] is defined as

SPLi = Si · li/max(pi, li), where i denotes the index of the episode, S = 1 when the

episode is successful and S = 0 otherwise, l denotes the length of the shortest path

between the agent and the audio goal, and p denotes the length of the actual path

taken by the agent in the episode. Soft SPL is a variation of SPL where Si = 1 for

all i.

We compare with the following models: DDPPO [302]: an end-to-end re-

inforcement learning policy trained with distributed proximal policy optimization.

Direction Follower [37]: this model predicts the direction of the audio goal and

navigates with the same waypoint planner. We stop the agent automatically when it

is within a 1-meter radius of the goal. Gan et al. [83]: this model predicts the (x,y)

location of the audio source and navigates using a waypoint planner. The agent stops

whenever it reaches its predicted location or the closest navigable point. Beamform-

ing [160]: classical beamforming method that calculates the direction of arrival of the

sound and navigates with the same waypoint planner.

To further justify our model design choice, we also compare with the following

ablations of our own model. AFP w/ predicting max: this model does not predict

the whole acoustic field. Instead, it predicts a single point that represents the highest

point of the local acoustic field. AFP w/ audio-only: this model only takes in

the audio input, which tests whether the full model uses the visual information when

predicting the acoustic field.

Results are shown in Tab. 4.7. Our model strongly outperforms all baselines
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and ablations. Compared to DDPPO, our model is more efficient due to its hierar-

chical nature since the DDPPO model often gets stuck with obstacles and corners.

Direction Follower and Gan et al. predict the goal direction/location directly, which

is however ill-posed when goals are in some other room at a distance from the robot.

As a result, their navigation performance is also pretty poor. For the Beamforming

baseline, similar to ours, it also predicts the local direction of arrival of the sound,

however, since it is not robust to reverberation and noise, it performs quite badly.

Lastly, the two ablations perform comparably to baselines but also underperform the

full model, showing it is beneficial to predict the full acoustic field and our model

uses visual sensors to understand the environment.

We show the comparison of trajectories with these baselines in the same

episode in Fig. 4.14, where our model is more efficient in reaching the goal. We

also visualize the acoustic fields of both the ground truth and prediction in Fig. 4.15.

Initially, the model predicts high values at the corner (in the direction of the goal),

and as the agent gets close to the goal, it predicts high values at the center of the

field.

4.4.4.2 Experiment 2: Acoustic Field Prediction on Real Data

Here we evaluate our frequency-adaptive acoustic field prediction (FA-AFP)

model on the collected real acoustic field data. We compare our method to the random

baseline and ablations of our approach. We consider three ablations: “All-freq AFP”

uses all frequencies for prediction. “Best-freq AFP” uses the best frequency band

shown in Fig. 4.13 and “Highest-energy AFP” uses the band where the received

audio has the highest energy. We measure the performance of different prediction

errors with the angle and distance of the predicted max location on the acoustic field.

We train our models on 73 sounds and test on 7 unheard sounds.

The results are shown in Tab. 4.8. We show that compared to the random

prediction, our All-freq AFP model reduces the prediction error drastically. If we
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Ours

DDPPOGan et al.

Direction follower

Agent Goal Trajectory
Figure 4.14: Navigation trajectory comparison. Our model successfully navigates to
the source while other baselines fail due to either getting stuck or navigating in the
wrong direction.

always use the best frequency for prediction, it helps lower the angle error a bit but not

the distance error. Using the frequency band with the highest energy brings down the

prediction error more. Our frequency-adaptive prediction model (FA-AFP) improves

the performance even further, showing the importance of intelligently selecting a

frequency band for prediction.

In Fig. 4.16, we show examples of the collected acoustic field and the predicted

acoustic field for multiple directions and sounds. Note that the acoustic field is only

sampled at a 3 × 3 grid centered at the robot to reduce the cost of collection. Our

predictions are consistently accurate across examples.

4.4.4.3 Experiment 3: Real Robot Navigation

Finally, to validate the whole navigation pipeline, we deploy our navigation

policy on the real robot platform (described in Sec. 4.4.3). When deploying on the

real robot, one thing that differs from the previously collected real data is that the

robot also makes some low-frequency noise while running. To address this issue, we
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RGBLeft Channel Right Channel GT AF Pred AF

Figure 4.15: Visualization of acoustic field prediction within the same episode. Top
row: when the robot is still far from the goal. Bottom row: when the robot is right
next to the goal. Our model predicts accurately in both cases.

Angle ↓ Distance ↓
Random 1.57 1.45

All-freq AFP 0.22 0.74
Best-freq AFP 0.20 0.74

Highest-energy AFP 0.04 0.70
FA-AFP (Ours) 0.04 0.63

Table 4.8: Results for testing on real acoustic field data.

collect recordings of the robot noise and perform data augmentation by adding the

noise to the received sound during training to improve the model performance.

We conduct 20 navigation examples with various source/receiver distances

and directions and show that our robot can navigate the sounding object with a 75%

success rate. We also tried to deploy the best-performing baseline DDPPO, which

however failed all the test scenarios, which is likely due to the significant physical

sim2real gap since that model trains with RL end-to-end. We show one navigation

step example in Fig. 4.10, where the model predicts the acoustic field correctly.
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Figure 4.16: Acoustic field predictions on real data. The real data is measured with a
lower resolution. We show the prediction and measurement for multiple sounds and
directions. Our model predicts all of these cases accurately.

4.5 Conclusions

In this chapter, I showed two audio-visual navigation benchmarks and multiple

audio-visual navigation policies that can successfully navigate to find sounding objects

in unknown environments. These policies learn to generalize to novel environments as

well as novel unheard sounds. In addition, I introduced an approach for transferring

the policy from simulation to the real world. While exciting first steps in embodied

audio-visual learning, there are some limitations of this work as well as promising

future directions.

First of all, in the audio-visual navigation task’s assumption, the sounding ob-

ject is a randomly sampled point in space (not visible) and it emits sounds throughout

the whole episode. This is not a realistic assumption because real-world objects are

visible and often only produce sounds for a short period of time. I address this issue

by introducing the semantic audio-visual navigation task later in Chapter 5.

Secondly, despite the robot being able to navigate successfully to the goal

in both simulation and the real world, the current task setting assumes one single

sound source present in the environment and the agent predicts the direction of the

sound (gradient of the sound pressure field) and moves in that direction. This is
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not the case in real-world environments, for example, in coffee shops or restaurants,

where all sounds are mixed together, including the sound we want robots to react to.

The existing solution does not differentiate different sounds and would fail in such

a complex scenario. One possible solution to deal with this is to use language to

provide specification of the sound; for example, we could ask the robot to navigate

to a specific sound in the environment and reward the agent for reaching that sound

only. By doing so, the model will learn to implicitly separate the sound of interest

and navigate to find that sound.
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Chapter 5: Semantic Audio-Visual Navigation

In Chapter 3, I introduced the simulation platform SoundSpaces, and then

in Chapter 4, I introduced further the audio-visual navigation task along with some

models that could navigate successfully to find sounding objects. While exciting first

steps, existing audio-visual navigation work has two key limitations. First, prior

work assumes the target object constantly makes a steady repeating sound (e.g.,

alarm chirping, phone ringing). While important, this corresponds to a narrow set

of targets; in real-world scenarios, an object may emit a sound only briefly or start

and stop dynamically. Second, in current models explored in realistic 3D environ-

ment simulators, the sound-emitting target has neither a visual embodiment nor any

semantic context. Rather, target sound sources are placed arbitrarily in the environ-

ment and without relation to the semantics of the scene and objects. As a result, the

role of audio is limited to providing a beacon of sound announcing where the object

is.

In light of these limitations, we introduce a novel task: semantic audio-visual

navigation. In this task, the agent must navigate to an object situated contextually in

an environment that only makes sound for a certain period of time. Semantic audio-

visual navigation widens the set of real-world scenarios to include acoustic events of

short temporal duration that are semantically grounded in the environment. It offers

new learning challenges. The agent must learn not only how to associate sounds with

visual objects, but also how to leverage the semantic priors of objects (along with

any acoustic cues) to reason about where the object is likely located in the scene. For

example, hearing the dishwasher stop running and issue its end of cycle chime should

suggest both what visual object to search for as well as the likely paths for finding it,

i.e., towards the kitchen rather than the bedroom. Notably, in the proposed task, the

agent is not given any external information about the goal (such as a displacement

vector or name of the object to search for). Hence the agent must learn to leverage
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Figure 5.1: Semantic audio-visual navigation in 3D environments: an agent must
navigate to a sounding object. Since the sound may stop while the agent searches
for the object, the agent is incentivized to learn the association between how objects
look and sound, and to build contextual models for where different semantic sounds
are more likely to occur (e.g., water dripping in the bathroom).

sporadic acoustic cues that may stop at any time as it searches for the source, inferring

what visual object likely emitted the sound even after it is silent. See Figure 5.1.

To tackle semantic AudioGoal, we introduce a deep reinforcement learning

model that learns the association between how objects look and how they sound.

We develop a goal descriptor module that allows the agent to hypothesize the goal

properties (i.e., location and object category) from the received acoustic cues before

seeing the target object. Coupled with a transformer, it learns to attend to the

previous visual and acoustic observations in its memory—conditioned on the predicted

goal descriptor—to navigate to the audio source. Furthermore, to support this line of

research, we instrument audio-visual simulations for real scanned environments such

that semantically relevant sounds are attached to semantically relevant objects.

We evaluate our model on 85 large-scale real-world environments with a variety

of semantic objects and their sounds. Our approach outperforms state-of-the-art

models in audio-visual navigation with up to an absolute 8.9% improvement in SPL.

Furthermore, our model is robust in handling short acoustic signals emitted by the

goal with varying temporal duration, and compared to the competitors, it more often
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reaches the goal after the acoustic observations end. In addition, our model maintains

good performance in the presence of environment noise (distractor sounds) compared

to baseline models. Overall, this chapter shows the potential for embodied agents to

learn about how objects look and sound through interactions with a 3D environment.

In Sec. 5.1, I define the semantic audio-visual navigation task. In Sec. 5.2 and

Sec. 5.3, I present the approach and the experiments respectively. This work was

published in CVPR 2021 [36].

5.1 Semantic Audio-Visual Navigation

We introduce the novel task of semantic audio-visual navigation. In this task,

the agent is required to navigate in a complex, unmapped environment to find a

semantic sounding object—“semantic AudioGoal” for short. Different from Audio-

Goal [35, 83], the goal sound need not be periodic, has variable duration, and is

associated with a meaningful semantic object (e.g., the door creaking is associated

with the apartment’s door). This setting represents common real world events, and

as discussed above, poses new challenges for embodied learning. Relying on audio

perception solely to produce step-by-step actions is not sufficient, since the audio

event is relatively short. Instead, the agent needs to reason about the category of the

sounding object and use both visual and audio perception to predict its location.

3D environments and simulator. Consistent with the active body of computer

vision work on embodied AI done in simulation, and to facilitate reproducibility of our

work, we rely on a visually and acoustically realistic simulation platform to model an

agent moving in complex 3D environments. We use SoundSpaces [35], which enables

realistic audio rendering of arbitrary sounds for the real-world environment scans

in Replica [265] and Matterport3D [29]. We use the Matterport environments due

to their greater scale and complexity. As discussed above, SoundSpaces is Habitat-

compatible [247] and allows rendering arbitrary sounds at any pair of source and
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receiver (agent) locations on a uniform grid of nodes spaced by 1 m. Next we explain

how we extend this audio data to provide semantically meaningful sounds.

Semantic sounds data collection. We use the 21 object categories defined in

the ObjectGoal navigation challenge [18] for Matterport3D environments: chair, ta-

ble, picture, cabinet, cushion, sofa, bed, chest of drawers, plant, sink, toilet, stool,

towel, tv monitor, shower, bathtub, counter, fireplace, gym equipment, seating, and

clothes. All of these categories have objects that are visually present in Matterport

environments. By rendering object-specific sounds at the locations of the Matterport

objects, we obtain semantically meaningful and contextual sounds. For example, the

water flush sound will be associated with the toilet in the bathroom, and the crackling

fire sound with the fireplace in the living room or the bedroom. We filter out object

instances that are not reachable by the navigability graph. The number of object

instances for train/val/test is 303/46/80 on average for each object category.

We consider two types of sound events: object-emitted and object-related.

Object-emitted sounds are generated by the object, e.g., a toilet flushing, whereas

object-related sounds are caused by people’s interactions with the object, e.g., food

being chopped on the counter. To provide a variety of sounds, we search a public

database freesound.org by the 21 object names to get long copyright-free audio clips

per object. We split the original clips (average length 81s) evenly into train/val/test

clips. These splits allow the characteristics of the unheard sounds (i.e., waveforms not

heard during training) to be related to those in the training set, while still preserving

natural variations.∗ The duration of the acoustic phase in each episode is randomly

sampled from a Gaussian of mean 15s and deviation 9s, clipped for a minimum 5s

and maximum 500s. If the sampled duration is longer than the length of the audio

clip, we replay the clip.

∗Note that even the same waveform will sound different when rendered in a new environment; the sound received
by the agent is a function of not only that waveform but also the environment geometry and the agent’s position
relative to the source.
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Action space and sensors. The agent’s action space is MoveForward, TurnLeft,

TurnRight, and Stop. The last three actions are always valid, while MoveForward

only takes effect when the node in front of the agent is reachable from that position

(no collision). The sensory inputs are egocentric binaural sound (two-channel audio

waveforms), RGB, depth, and the agent’s current pose.

Episode specification and success criterion. An episode of semantic AudioGoal

is defined by 1) the scene, 2) the agent start location and rotation, 3) the goal location,

4) the goal (object) category and 5) the duration of the audio event. In each episode

in a given scene, we choose a random object category and a random instance of that

category as the goal. The agent’s start pose is also randomly positioned in the scene.

In semantic AudioGoal, the agent has to stop near the particular sounding object

instance, not simply any instance of the class. This is a stricter success criterion than

ObjectGoal [18], which judges an episode as successful if the agent stops near any

instance of that category. We define a set of viewpoints around each object within

1 m of the object’s boundary; issuing the Stop action at any of these viewpoints is

considered a successful termination of the episode.

5.2 Approach

We propose SAVi, a novel model for the semantic audio-visual navigation task.

SAVi uses a persistent multimodal memory along with a transformer model, which,

unlike RNN-based architectures (e.g., [35]) or reactive ones (e.g., [83]), can directly

attend to observations with various temporal distances from the current step to locate

the goal efficiently. Furthermore, our model learns to capture goal information from

acoustic events in an explicit descriptor and uses it to attend to its memory, thus

enabling the agent to discover any spatial and semantic cues that may help it reach

the target faster.

Our approach has three main components (Figure 5.2): 1) an Observation

Encoder that maps the egocentric visual and acoustic observations received by the

121



RGB

Depth

Left

Right

Pose Sensor

𝑓𝑝

f𝜆

Encoder Decoder

Critic

Actor

Action 

Sampler

Environment

𝑎𝑡−1

𝐷𝑡

𝐷𝑡−1

Δ𝑝𝑡

Observation Encoder Goal Descriptor Network

Policy Network

𝐷𝑡

𝑂𝑡

𝐼𝑡

𝐵𝑡

𝑝𝑡

𝑠𝑡𝑀

𝑎𝑡

𝑀𝑒

𝑓𝐷

𝑓𝐼

𝑓𝐵

Binaural Spectrograms

𝑒𝑡
𝑂

𝑒𝑡−1
𝑂

𝑒𝑡−𝑠𝑀
𝑂

𝐶𝑡

𝐿𝑡

Figure 5.2: In our model, the agent first encodes input observations and stores their
features in memory M . Then our goal descriptor network leverages the acoustic cues
to dynamically infer and update a goal descriptor Dt of the target object, which
contains both location Lt and object category Ct information about the goal. By
conditioning the agent’s scene memory on the goal descriptor, the learned state rep-
resentation st preserves information most relevant to the goal. Our transformer-based
policy network attends to the encoded observations in M with self-attention to rea-
son about the 3D environment seen so far, and it attends to Me with Dt to capture
possible associations between the hypothesized goal and the visual and acoustic ob-
servations to predict the state st. Then, st is fed to an actor-critic network, which
predicts the next action at. The agent receives its reward from the environment based
on how close to the goal it moves and whether it succeeds in reaching it.

agent at each step to an embedding space; 2) a Goal Descriptor Network that pro-

duces a goal descriptor based on the encoded observations; and 3) a Policy Network

that given the encoded observations and the predicted goal descriptor, extracts a

descriptor-conditioned state representation and outputs the action distribution. Next,

we describe each module. We defer CNN architecture details to Sec. 5.2.4.
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5.2.1 Observation Encoder

At each time step t, the agent receives an observation Ot = (It, Bt, pt, at−1),

where I is the egocentric visual observation consisting of an RGB and depth image;

B is the received binaural audio waveform represented as a two-channel spectrogram;

p is the agent pose defined by its location and orientation (x, y, θ) with respect to its

starting pose p0 in the current episode; and at−1 is the action taken at the previous

time step.

Our model encodes each visual and audio observation with a CNN, eIt = fI(It)

and eBt = fB(Bt). Then, the observation Ot encoding is eOt = [eIt , e
B
t , pt, at−1]. The

model stores the encoding of the observations up to time t in memory M = {eOi :

i = max{0, t− sM}, . . . , t} (see Figure 5.2 second column), where sM is the memory

size.

5.2.2 Goal Descriptor Network

As described in Sec. 5.1, the agent does not receive direct information about

the goal; rather, it needs to rely solely on its observations to set its own target. Audio

carries rich cues about the target—not only its relative direction and distance from the

agent, but also the type of object that may have produced the acoustic event. Hence,

we leverage the acoustic signal to predict the goal properties, namely its location

(spatial) and object category (semantics). Both properties are crucial for successful

navigation. The estimated goal location gives the agent an idea of where to find the

goal. However, since the acoustic event may be short-lived, and the estimate may be

inaccurate, the agent cannot solely rely on this initial estimate. Our model thus aims

to also leverage the goal semantics in terms of both the object’s likely appearance

and the scene’s visual context.

The goal descriptor network is a CNN fD such that D̂t = fD(Bt), where D̂t

is the step-wise estimate of the descriptor and it consists of two parts: the current

estimate of the goal location L̂t = (∆x,∆y) relative to the agent’s current pose
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pt, and its predicted object label Ĉt. To reduce the impact of noise from a single

prediction, the agent aggregates the current estimate with the previous goal descriptor

Dt = fλ(D̂t, Dt−1,∆pt) = (1 − λ)D̂t + λfp(Dt−1,∆pt), where fp(·) transforms the

previous goal location L̂t−1 based on the last pose change ∆pt (the goal label is

unaffected by this transformation), and λ is the weighting factor, which is set to 0.5

based on validation. When sound stops (i.e., the sound intensity becomes zero), the

agent maintains its latest estimate Dt by simply transforming the previous descriptor

based on the pose change ∆pt to obtain the current descriptor Dt = fp(Dt−1,∆pt).

5.2.3 Policy Network

Our reinforcement learning policy network is based on a transformer archi-

tecture. Using the memory M collected so far in the episode, the transformer pro-

ceeds by encoding these observation embeddings with a self-attention mechanism

to capture any possible relations among the inputs, yielding the encoded memory

Me = Encoder(M). Then, using the predicted goal descriptor Dt, a decoder network

attends to all cells in the encoded memory Me to calculate the state representation

st = Decoder(Me, Dt).

An actor-critic network uses st to predict the action distribution and value of

the state. The actor and the critic are each modelled by single linear layer neural

network. Finally, an action sampler samples the next action at from this action

distribution, determining the agent’s next motion in the 3D scene.

5.2.4 Training

To train the goal descriptor network, we generate pairs of ground truth loca-

tions and categories from the simulator for the array of training sounds, and train the

prediction network in a supervised fashion. For the category prediction portion, we

find off-policy training gives good accuracy; hence we pre-train the classifier on 3.5M

collected spectrogram-category pairs at a variety of positions in the training environ-
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ments and freeze it during policy training. In contrast, location prediction is learned

better on-policy. Training the Lt predictor on-policy has the benefit of matching the

training data distribution with policy behavior, leading to higher accuracy. We use

the same experience collected for policy training to train the location predictor and

update them at the same frequency. We use the mean squared error loss for the

location predictor and the cross entropy loss for the goal object label predictor.

For policy training, we follow a two-stage training paradigm (as shown to be

effective for transformer-based models [74]) using decentralized distributed proximal

policy optimization (DD-PPO) [302]. In the first stage, we set the memory size sM = 1

(the most recent observation) to train the observation encoder without attention.

Then, in the second stage, we freeze the observation encoder and train the rest of the

model with the full memory size (sM = 150). In both stages, the loss consists of a

value network loss to reduce the error of state-value prediction, a policy network loss

to produce better action distributions, and an entropy loss to encourage exploration.

We refer readers to PPO [254] for more details. To train the policy, we reward the

agent with +10 if it reaches the goal successfully and issue an intermediate reward

of +1 for reducing the geodesic distance to the goal, and an equivalent penalty for

increasing it. We also issue a time penalty of −0.01 per time step to encourage

efficiency.

To avoid sampling easy episodes (e.g., short or straight-line paths), we require

the geodesic distance from the start pose to the goal to be greater than 4 m and the

ratio of Euclidean distance to geodesic distance to be greater than 1.1. We collect

0.5M/500/1000 episodes for train/val/test splits for all 85 Matterport3D SoundSpaces

environments.

We train our model with Adam [143] with a learning rate of 2.5 × 10−4 for

the policy network and 1 × 10−3 for the descriptor network. We roll out policies for

150 steps, update them with collected experiences for two epochs, and repeat this

procedure until convergence. We train all methods, both ours and the baselines, for
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Heard Sounds Unheard Sounds
Success SPL SNA DTG SWS Success SPL SNA DTG SWS

Random 1.4 3.5 1.2 17.0 1.4 1.4 3.5 1.2 17.0 1.4
ObjectGoal RL 1.5 0.8 0.6 16.7 1.1 1.5 0.8 0.6 16.7 1.1
Gan et al. [83] 29.3 23.7 23.0 11.3 14.4 15.9 12.3 11.6 12.7 8.0
AV-Nav [35] 21.6 15.1 12.1 11.2 10.7 18.0 13.4 12.9 12.9 6.9
AV-WaN [38] 20.9 16.8 16.2 10.3 8.3 17.2 13.2 12.7 11.0 6.9

SMT [74] + Audio 22.0 16.8 16.0 12.4 8.7 16.7 11.9 10.0 12.1 8.5
SAVi (Ours) 33.9 24.0 18.3 8.8 21.5 24.8 17.2 13.2 9.9 14.7

Table 5.1: Navigation performance on the SoundSpaces Matterport3D dataset [35].
Our SAVi model has higher success rates and follows a shorter trajectory (SPL) to
the goal compared to the state-of-the-art. Equipped with its explicit goal descriptor
and having learned semantically grounded object sounds from training environments,
our model is able to reach the goal more efficiently—even after it stops sounding—at
a significantly higher rate than the closest competitor (see the SWS metric). All
metrics are the higher the better except for DTG.

300M steps for them to fully converge.

At each time step, the agent receives a binaural audio clip of 1s, represented

as two 65 × 26 spectrograms. The audio is computed by convolving the appropriate

impulse response from SoundSpaces with the source audio waveform, thereby gen-

erating the sound the agent would hear in that environment at its current position

relative to the source. The RGB and depth images are center cropped to 64 × 64.

Both the observation encoder CNNs fB and fI and the descriptor network fD use a

simplified ResNet-18 [115] that is trained from scratch. For the transformer model,

we use one encoder layer and one decoder layer, which employ multi-attention with

8 heads. The hidden state size is 256 and the memory size sM is 150, matching the

frequency of policy updates.

5.3 Experiments

Baselines. We compare our model to the following baselines and existing work:
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1. Random: A random baseline that uniformly samples one of three actions and

executes Stop automatically when it reaches the goal (perfect stopping).

2. ObjectGoal RL: An end-to-end RL policy with a GRU encoder and RGB-D

inputs (no audio). It is given the one-hot encoding of the true category label

as an additional input to search for the goal object instance. This baseline is

widely used in ObjectGoal tasks [109, 31, 193, 30]. We train this method for

800M steps with perfect stopping.

3. Gan et al. [83]: A modular audio-visual model that trains a goal location

predictor offline and uses a geometric planner for planning. Since the origi-

nal model can not handle sporadic audio events, we improve its goal location

predictor with our update operation fλ.

4. AV-Nav [35] (see Sec. 4.1.1): An end-to-end RL policy that encodes past

memory with a GRU RNN and is trained to reach the goal using audio and

visual observations.

5. AV-WaN [38] (see Sec. 4.2): A hierarchical RL model that records acoustic

observations on the ground plane, predicts waypoints, and uses a path planner

to move towards these waypoints using a sequence of navigation actions.

6. SMT [74] + Audio: We adapt the scene memory transformer (SMT) model [74]

to our task by also encoding the audio observation in its memory. Unlike our

model, it does not explicitly predict the goal description and relies only on the

cues available in memory to reach the goal. The latest observation embedding

is used as decoder input to decode Me and predict the state.

All models use the same reward function and inputs. For all methods, there is

no actuation noise since audio rendering is only available at grid points (see [35] for

details).
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Figure 5.3: Example SAVi navigation trajectories. In the first episode (top/magenta)
the agent hears a water dripping sound and in the second episode (bottom/orange)
a sound of opening and closing a door. For each episode, we show three egocentric
visual views (right) sampled from the agent’s trajectory at the start location 1○,
when the sound stops 2○, and at the end location 3○. In the top episode, the acoustic
event lasts for two thirds of the trajectory and when the sound stops the agent has
an accurate estimate of the object location that helps it find the sounding object
(the sink). The second episode (bottom) has a much shorter acoustic event. The
agent’s estimate of the object location is inaccurate when the sound stops but still
helps the agent as a general directional cue. The agent leverages this spatial cue and
the semantic cue from its estimate of the object category, a cabinet, to attend to its
multimodal memory to find the object in the kitchen and end the episode successfully.

Metrics. We evaluate the following navigation metrics: 1) success rate: the fraction

of successful episodes; 2) success weighted by inverse path length (SPL): the standard

metric [8] that weighs successes by their adherence to the shortest path; 3) success

weighted by inverse number of actions (SNA) [38]: this penalizes collisions and in-

place rotations by counting number of actions instead of path lengths; 4) average

distance to goal (DTG): the agent’s distance to the goal when episodes are finished;

5) success when silent (SWS): the fraction of successful episodes when the agent

reaches the goal after the end of the acoustic event.

Navigation results. Following standard protocol [35] we evaluate all models in two

settings: 1) heard sounds—train and test on the same sound 2) unheard sounds—

train and test on disjoint sounds. In both cases, the test environments are always
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unseen, hence both require generalization. All results are averaged over 1,000 test

episodes.

Table 5.1 shows the results. Our SAVi approach outperforms all other models

by a large margin on all metrics—with 0.3%, 8.9%, 7.2%, 7.2% absolute gains in SPL

on heard sounds and 4.9%, 3.8%, 4%, 5.3% absolute SPL gains on unheard sounds

compared to Gan et al. [83], AV-Nav [35], AV-WaN [38], and SMT [74], respectively.

This shows our model leverages audio-visual cues intelligently and navigates to goals

more efficiently. AV-WaN represents the state-of-the-art for AudioGoal audio-visual

navigation. Our SAVi model’s gains over AV-WaN show both 1) the distinct new chal-

lenges offered by the semantic AudioGoal task, and 2) our model’s design effectively

handles them.†

In addition, our model improves the success-when-silent (SWS) metric by a

large margin compared to the closest competitor. This emphasizes the advantage of

our goal descriptor module. The explicit and persistent descriptor for the goal in our

model helps to maintain the agent’s focus on the target even after it stops emitting a

sound. Although the SMT+Audio [74] model also has access to a large memory pool

and can leverage implicit goal information from old observations, lacking our goal

descriptor and the accompanying goal-driven attention, it underperforms our model

by a sizeable margin.

As expected, Random does poorly on this task due to the challenging complex

environments. Although ObjectGoal RL has the goal’s ground truth category label

as input, it fails in most cases. This shows that knowing the category label by itself

is insufficient to succeed in this task; the agent needs to locate the specific instance

of that category, which is difficult without the acoustic cues.

†While AV-WaN [38] reports large performance improvements over AV-Nav [35] on the standard AudioGoal task,
we do not observe similar margins between the two models here. We attribute this to temporal gaps in the memory
caused by AV-WaN’s waypoint formulation—which are not damaging for constantly sounding targets, but do cause
problems for semantic AudioGoal.
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Navigation trajectories. Figure 5.3 shows test episodes for our SAVi model. The

agent uses its acoustic-visual perception and memory along with the spatial and

semantic cues from the acoustic event, whether from a long event (water dripping

sound) or a short one (opening and closing a door sound), to successfully find the

target objects (the sink and the cabinet).

Common failure cases are when: 1) the sound stops too early in the episode,

and the agent has not accumulated enough spatial or semantic cues about the goal.

In this case the agent might either search for the wrong object (noisy semantics)

or search for the object in the wrong place (noisy location); 2) the agent issues a

premature stop action near the target object but not exactly at the right location.

Distractor sounds. In our tests so far, there is a single acoustic event per episode,

whether comprised of a heard or unheard sound (Table 5.1). Next, we generalize the

setting further to include unheard distractor sounds—sounds happening simultane-

ously with the target object. This corresponds to real-world scenarios, for example,

where the door slams shut while the AC is humming. For this setting to be well-

defined, the agent must know which sound is its target; hence, we input the one-hot

encoding of the target object to all models and concatenate it with their state fea-

tures. For our model, in addition to replacing Ct with this one-hot encoding, we also

use it as input to the location prediction network along with Bt. This allows the lo-

cation prediction network to learn to identify which of the sounds mixed in the input

needs to be localized. We use the 102 periodic sounds from SoundSpaces [35] as the

set of possible distractor sounds, which are disjoint from the target object sounds cu-

rated for this work. We divide these 102 sounds into non-overlapping 73/11/18 splits

for train/val/test, and hence the distractor sound at test time is unheard. In each

episode, we randomly position one distractor sound in the environment at a location

different from the goal.

Table 5.2 shows the results. While the performance of the baselines suffers

from the distracting environment noise, our agent is still able to reach a success rate
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Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
AV-Nav [35] 4.0 2.4 2.0 14.7 2.3
AV-WaN [38] 3.0 2.0 1.8 14.0 1.6

SMT [74]+Audio 4.2 2.9 2.1 14.9 2.8
SAVi (Ours) 11.8 7.4 5.0 13.1 8.4

Table 5.2: Navigation performance on unheard sounds in the presence of unheard
distractor sounds.

of 11.8% and SPL of 7.4%, which is 7.6% and 4.5% higher than the best-performing

baseline. This shows the proposed inferred goal descriptor helps the agent attend to

important observations to capture semantic and spatial cues, making our model more

robust to the environment noise. That said, the absolute performance declines for all

methods in this hard setting. We plan to investigate ways to explicitly separate the

“clutter” sounds in future work.

Analyzing the goal descriptor. Next we ablate the two main components in the

goal descriptor, location and category, to study their relative impact for the unheard

sounds experiment from Table 5.1. Table 5.3 shows that ablating any component

results in a performance drop. Lt has a comparatively larger impact on our model’s

performance.

Next we analyze the successful episodes in the context of Lt and Ct. For 56% of

them, our model ends the episode by stopping at its own estimate of the goal location

in its descriptor, suggesting that the agent has successfully used its directional sound

prediction to guide its movements. On the other hand, for the other 44%, the agent

stops at a (correct) location different than Lt, suggesting that the agent has relied

more on the visual context cues leading to the anticipated object Ct. In fact, if we

inject a random category label instead of Ct at the start of the episode, success rates

and SPL drop up to 8%. The learned associations between the spatial and semantic

cues are important for success; breaking these associations with random category

labels forces the agent to attend to contradictory cues about the goal in its memory,
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Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
Ct-only 20.5 13.5 11.6 9.8 11.0
Lt-only 23.9 16.2 13.5 9.3 13.8

w/o aggregation 21.9 14.3 11.1 9.7 13.4
Full model 24.8 17.2 13.2 9.9 14.7

Table 5.3: Ablation experiment results.

thus increasing the chance of failure.

To understand if the performance gain comes from our goal descriptor or the

transformer, we further ablate our model by replacing the transformer with an RNN.

We find that our goal descriptor network also provides significant improvements when

combined with RNNs.

Goal descriptor accuracy and aggregation. The goal descriptor network has

two main modules: 1) fD(·), which produces the current descriptor estimate and

2) an aggregation function fλ(·), which aggregates the current estimate with the

previous goal descriptor. Next we evaluate goal prediction accuracy with and without

aggregation, as well as how aggregation impacts the navigation performance.

The average location prediction error is 8.1 m and the average category pre-

diction accuracy is 64.5% with aggregation, and 8.4 m, 53.6% without aggregation.

Aggregation is important because the source sound is divided into 1s clips for each

step, and the characteristics of the sound in some seconds are harder to identify,

e.g., the silent moment between pulling and pushing a chest of drawers. Essentially,

aggregation stabilizes the goal descriptor prediction. Navigation performance is af-

fected as well: success rate and SPL drop about 3 points without aggregation (“w/o

aggregation” ablation in Table 5.3).

Robustness to silence duration. Figure 5.4 analyzes how the models perform

after the goal sound stops. We plot the cumulative success rate vs. silence ratio,

where the latter is the ratio of the minimum number of actions required to reach
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Figure 5.4: Cumulative success rate vs. silence percentage.

the goal to the duration of audio. A point (x, y) on this plot means the fraction

of successful episodes with ratios up to x among all episodes is y. When this ratio

is greater than 1, no agent can reach the goal before the audio stops. The greater

this ratio is, the longer the fraction of silence, and hence the harder the episode.

Indeed, we see for all models the success rate accumulates more slowly as the ratio

becomes bigger. However, while the success rates of AV-Nav [35], AV-WaN [38],

and SMT [74] increase only marginally for ratios greater than 1, our model shows a

noticeable increase after the ratios surpass 1 and even 2. This indicates our model is

able to cope with long silence to reach goals, thanks to the guidance of our predicted

goal descriptor and its attention on the memory.

5.4 Conclusions

In this chapter, we introduce the task of semantic audio-visual navigation in

complex 3D environments. To support this task, we expand an existing audio sim-

ulation platform to provide semantically grounded object sounds. We introduce a

transformer-based model that learns to predict a goal descriptor capturing both spa-

tial and semantic properties of the target. By encoding the observations conditioned

on this goal descriptor, our model learns to associate acoustic events with visual ob-

servations. We show that our approach outperforms existing state-of-the-art models.
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We provide an in-depth analysis of the impact of the goal descriptor and its compo-

nents and show that our model is more robust to long silence duration and acoustic

distractors.

There are however some limitations to this work. One of them is that this work

relies on the curation of the semantic sounds and the assignment of these sounds to

objects to learn the correspondence. This process of creating the dataset is time-

consuming and prevents the model from scaling to more diverse scenarios in the

real world. One possible solution is to automatically create the dataset by leveraging

existing video datasets such as AudioSet [93] or VGG-Sound [46], where visual objects

and the sounds co-occur.

Another limitation of this work is that the generalization is evaluated on un-

heard audio clips rather than unheard categories. To generalize to sounds of unheard

categories requires building an external knowledge base, i.e., the correspondence be-

tween visual objects and the sounds, and the semantic correlation between the object

and the space.

I demonstrated my efforts in building embodied audio-visual agents in both

this chapter and the previous chapter. To achieve the goal of deploying these policies

on real robots, besides solving the sim2real problem discussed earlier, it is also im-

portant to interact with humans and take humans’ speech commands as input, e.g.,

when someone asks a robot “Bring me a coffee”, the robot needs to both understand

the command and execute it. However, understanding (recognizing) speeches from a

distance is not trivial because there is usually a strong presence of reverberation. In

the next chapter, I will present how I approach this problem by leveraging the visual

cues.

134



Chapter 6: Learning Audio-Visual Dereverberation

In Chapter 4 and Chapter 5, I presented several approaches for embodied

audio-visual learning, where the agent needs to perceive the environment while ac-

tively making decisions. When the agent hears sounds in the environment, not only it

is important to sense the direction and distance cues from the audio, but also it needs

to understand the semantics of the sound, e.g., recognizing what objects might pro-

duce the sound in Chapter 5 or understanding humans’ speech commands like “bring

me a coffee”. Beyond robotics, perceiving sounds and understanding sounds have a

wide range of applications, such as audio/video processing and machine translation.

Motivated by this application, in this chapter, instead of studying joint perception

and decision-making, I will focus on just the perception part. More specifically, I

will demonstrate how to enhance sounds received in spaces by leveraging visual cues.

This work was published in ICASSP 2023 [42].

Audio reverberation occurs when multiple reflections from surfaces and objects

in the environment build up then decay, altering the original audio signal. While re-

verberation bestows a realistic sense of spatial context, it also can degrade a listener’s

experience. In particular, the quality of human speech is greatly affected by rever-

berant environments—as illustrated by how difficult it can be to parse the words of a

family member speaking loudly from another room in the house, a tour guide describ-

ing the artwork down the hall of a magnificent cavernous cathedral, or a colleague

participating in a Zoom call from a cafe. Consistent with the human perceptual ex-

perience, automatic speech recognition (ASR) systems noticeably suffer when given

reverberant speech input [144, 326, 271, 113, 307, 71]. Thus there is great need for

intelligent dereverberation algorithms that can strip away reverb effects for speech

enhancement, recognition, and other downstream tasks, which could in turn benefit

many applications in teleconferencing, assistive hearing devices, augmented reality,

and video indexing.
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Panoramic view of the environment

Input audio Target audioVisually-informed

Dereverberation

Figure 6.1: The goal of audio-visual dereverberation is to leverage the visual obser-
vation of the environment to improve speech enhancement.

The audio community has made steady progress devising machine learning

solutions to tackle speech dereverberation [71, 97, 259, 113, 306, 325, 267]. The general

approach is to take a reverberant speech signal, usually represented with a Short-Time

Fourier Transform (STFT) spectrogram, and feed it as input to a model that estimates

a clean version of the signal with the reverberation removed. Past approaches have

tackled this problem with signal processing and statistical techniques [205, 206], while

many modern approaches are based on neural networks that learn a mapping from

reverberant to clean spectrograms [113, 71, 77]. To our knowledge, all existing models

for dereverberation rely purely on audio. Unfortunately this often underconstrains

the dereverberation task since the latent parameters of the recording space are not

discernible from the audio alone.

However, we observe that in many practical settings of interest—video con-

ferencing, augmented reality, Web video indexing—reverberant audio is naturally

accompanied by a visual (video) stream. Importantly, the visual stream offers valu-

able cues about the room acoustics affecting reverberation: where are the walls, how

are they shaped, where is the human speaker, what is the layout of major furni-

ture, what are the room’s dominant materials (which affect absorption), and even

what is the facial appearance and/or body shape of the person speaking (since body

shape determines the acoustic properties of a person’s speech, and reverb time is

frequency dependent). For example, reverb is typically stronger when the speaker is
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further away; speech is more reverberant in a large church or hallway; heavy carpet

absorbs more sound. See Figure 6.2. While some recent work explores acoustic mod-

eling using images [178, 39, 173, 142], no prior work has investigated how to leverage

visual-acoustic cues for dereverberation.

Our idea is to learn to dereverberate speech from audio-visual observations

(Fig. 6.1) In this task, the input is reverberant speech and visual observations of the

environment surrounding the human speaker, and the output is a prediction of the

clean source audio. To tackle this problem, there are two key technical challenges.

First, how to model the multi-modal dereverberation process in order to infer the

latent clean audio. Second, how to secure appropriate training data spanning a variety

of physical environments for which we can sample speech with known ground truth

(non-reverberant, anechoic) audio. The latter is also non-trivial because ordinary

audio/video recordings are themselves corrupted by reverberation but lack the ground

truth source signal we wish to recover.

For the modeling challenge, we introduce an end-to-end approach called Visually-

Informed Dereverberation of Audio (VIDA). VIDA consists of a Visual Acoustics

Network (VAN) that learns reverberation properties of the room geometry, object

locations, and speaker position. Coupled with a multi-modal UNet dereverberation

module, it learns to remove the reverberations from a single-channel audio stream. In

addition, we propose an audio-visual (AV) matching loss to enforce consistency be-

tween the visually-inferred reverberation features and those inferred from the audio

signal. We leverage the outputs of our model for multiple downstream tasks: speech

enhancement, speech recognition, and speaker identification.

Next, to address the training data challenge, we develop SoundSpaces-Speech,

a new large-scale audio-visual dataset based on SoundSpaces (presented in Chapter 3).

Our data approach inserts “clean” audio voices together with a 3D humanoid model

at various positions within an array of indoor environments, then samples the images

and properly reverberating audio when placing the receiver microphone and camera
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at other positions in the same house. This strategy allows sampling realistic audio-

visual instances coupled with ground truth raw audio to train our model, and it

has the added benefit of allowing controlled studies that vary the parameters of the

capture setting. As we will show, the data also supports sim2real transfer for applying

our model to real audio-visual observations.

Our main contributions are to 1) present the task of audio-visual dereverber-

ation, 2) address it with a new multi-modal modeling approach and a novel reverb-

visual matching loss, 3) provide a benchmark evaluation framework built on both

SoundSpaces-Speech and real data, and 4) demonstrate the utility of AV derever-

beration for multiple practical tasks. We first train and evaluate our model on 82

large-scale real-world environments—each a multi-room home containing a variety

of objects—coupled with speech samples from the LibriSpeech dataset [214]. We

consider both near-field and far-field settings where the human speaker is in-view or

quite far from the camera, respectively. The proposed model outperforms methods

restricted to the audio stream, and improves the state of the art for multiple tasks

with speech enhancement. We also show that our model trained in simulation can

transfer directly to real-world data. Overall, our work shows the potential for speech

enhancement models to benefit from seeing the 3D environment.

I first define the task in Sec. 6.1 and then introduce the dataset, approach and

experimental results in Sec. 6.2, Sec. 6.3 and Sec. 6.4 respectively.

6.1 The Audio-Visual Dereverberation Task

We introduce the novel task of audio-visual dereverberation. In this task, a

speaker (or other sound source) and a listener are situated in a 3D environment, such

as the interior of a house. The speaker—whose location is unknown to the listener—

produces a speech waveform As. A superposition of the direct sound and the reverb is

captured by the listener, denoted Ar. The reverberant speech Ar can be modeled as

the convolution of the anechoic source waveform As with the room impulse response
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Church, close speaker Classroom, close speaker Classroom, distant speakerAnechoic Chamber

Figure 6.2: Visual cues reveal key factors influencing reverb effects on human speech
audio. For example, these audio speech samples (depicted as waveforms and spectro-
grams) are identical lexically, but have very different reverberation properties owing
to their differing environments. In the church, reverb is strong, in the classroom it is
less, and when the speaker is distant from the camera it is again more evident.

R, i.e. Ar(t) = As(t)∗R(t) [207]. It is possible in principle to measure the RIR R for a

real-world environment, but doing so can be impractical when the source and listener

are able to move around or must cope with different environments. Furthermore, in

the common scenario where we want to process video captured in environments to

which we have no physical access, measuring the RIR is simply impossible.

Crucially to our task, we consider an alternative source of information about

the environment: vision. We assume the listener has an RGB-D observation of its

surroundings, obtained from a RGB-D camera or an RGB camera coupled with single-

image depth estimation [67, 98]. Intuitively, we should be able to leverage the infor-

mation about the environment’s geometry and material composition that is implicit

in the visual stream—as well as the location of the speaker (if visible)—to estimate

its reverberant characteristics. We anticipate that these cues can inform an esti-

mate of the room acoustics, and thus the clean source waveform. Given the RGB

Ir and depth image Id captured by the listener from its current vantage point, the

task is to predict the source waveform As from the images and reverberant audio:

Âs(t) = fp([Ir, Id, Ar(t)]). This setting represents common real-world scenarios pre-

viously discussed, and poses new challenges for speech enhancement and recognition.
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Camera Speaker

Panorama

Spectrogram

Figure 6.3: Audio-visual rendering for a Matterport environment. Left: bird’s-eye view
of the 3D environment. Right: panorama image rendered at the camera location and the
corresponding received spectrogram.

6.2 Dataset Curation

For the proposed task, obtaining the right training data is itself a challenge.

Existing video data contains reverberant audio but lacks the ground truth anechoic

audio signal, and existing RIR datasets [181, 130, 195] do not have images paired with

the microphone position. We introduce both real and simulated datasets to enable

reproducible research on audio-visual deverberation.

3D environments and acoustic simulator. First we introduce a large-scale

dataset in which we couple real-world visual environments with state-of-the-art au-

dio simulations accurately capturing the environments’ spatial effects on real samples

of recorded speech. We want our dataset to allow control of a variety of physical

environments, the positions of the listener/camera and sources, and the speech con-

tent of the sources—all while maintaining both the observed reverberant Ar(t) and

ground truth anechoic As(t) sounds. To this end, we leverage the audio-visual sim-

ulator SoundSpaces [35], which provides precomputed RIRs R(t) on a uniform grid

of resolution 1 m for the real-world environment scans in Replica [265] and Mat-

terport3D [29]. We use 82 Matterport environments due to their greater scale and

complexity; each environment has multiple rooms spanning on average 517 m2.
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SoundSpaces-Speech. We extend SoundSpaces to construct reverberant speech.

As the source speech corpus we use LibriSpeech [214], which contains 1,000 hours

of 16kHz read English speech from audio books, and is widely used in the speech

recognition literature. We train our models with the train-clean-360 split, and use

the dev-clean and test-clean sets for validation and test splits, respectively. Note that

these splits have non-overlapping speaker identities. Similarly, we use the standard

disjoint train/val/test splits for the Matterport 3D visual environments [35]. Thus,

neither the houses nor speaker voices observed at test time are ever observed during

training.

For each source utterance, we randomly sample a source-receiver location pair

in a random environment, then convolve the speech waveform As(t) with the associ-

ated SoundSpaces RIR R(t) to obtain the reverberant Ar(t). To augment the visual

scene, we insert a 3D humanoid of the same gender as the real speaker at the speaker

location and render RGB and depth images at the listener location. We consider two

types of image: panorama and normal field of view (FoV). For the panorama image,

we stitch 18 images each having a horizontal FoV of 20 degrees, for a full image reso-

lution of 192 × 756. For the normal FoV, we render images with a 80 degree FoV, at

a resolution of 384× 256. While the panorama gives a fuller view of the environment

and thus should allow the model to better estimate the room acoustics, the normal

FoV is more common in existing video and thus will facilitate our model’s transfer

to real data. See Fig. 6.3. We generate 49,430/2,700/2,600 such samples for the

train/val/test splits, respectively.

Real data collection. To explore whether models trained in simulation can also

work in the real world, we also collect a set of real images and speech recordings while

preserving the ground truth anechoic audio.

To collect image data, we use an iPhone 11 camera to capture a panoramic

RGB image and a monocular depth estimation algorithm [98] to generate the corre-

sponding depth image.
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To record the audio, we use a ZYLIA ZM-1 microphone. We place both the

camera and microphone at the same height (1.5m) as the SoundSpaces RIRs. For the

source speech, we play utterances from the LibriSpeech test set through a loudspeaker

held by a person facing the camera. We collect data from varying environments,

including auditoriums, meeting rooms, atriums, corridors, and classrooms. For each

environment, we vary the speaker location from near-field to mid-field to far-field. For

each location, we play around 10 utterances. During data collection, the microphone

also records ambient sounds like people chatting, door opening, AC humming, etc.

In total, we collect 200 recordings. Code and data are available at https://github.

com/facebookresearch/learning-audio-visual-dereverberation.

6.3 Approach

We propose the Visually-Informed Dereverberation of Audio (VIDA) model,

which leverages visual cues to learn representations of the environmental acoustics and

sound source locations to dereverberate audio. While our model is agnostic to the au-

dio source type, we focus on speech due to the importance of dereverberating speech

for downstream analysis. VIDA consists of two main components (Figure 6.4): 1) a

Visual Acoustics Network (VAN), which learns to map RGB-D images of the environ-

ment to features useful for dereverberation, and 2) the dereverberation module itself,

which is based on a UNet encoder-decoder architecture. The UNet encoder takes as

input a reverberant spectrogram, while the decoder takes the encoder’s output along

with the visual dereverberation features produced by the VAN and reconstructs a

dereverberated version of the audio.

Visual Acoustics Network. Visual observations of a scene reveal information

about room acoustics, including room geometry, materials, object locations, and the

speaker position. We devise the VAN to capture all these cues into a latent embedding

vector, which is subsequently used to remove reverb. This network takes as its input

an RGB image Ir and a depth image Id, captured from the listener’s current position
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Figure 6.4: VIDA model architecture. We convert the input speech to a spectrogram
and use overlapping sliding windows to obtain 2.56 second segments. For visual
inputs, we use separate ResNet18 networks to extract features er and ed, which are
fused to obtain ec. We feed the spectrogram segment Si

r to a UNet encoder, tile and
concatenate ec with the encoder’s output, then use the UNet decoder to predict the
clean spectrogram Ŝi

s. During inference, we stitch the predicted spectrogams back into
a full spectrogram and use Griffin-Lim [106] to reconstruct the output dereverberated
waveform.

within the environment. The depth image contains information about the geome-

try of the environment and arrangement of objects, while the RGB image contains

more information about their material composition. To better model these different

information sources, we use two separate ResNet18 [115] networks to extract their

features, i.e. er = fr(Ir) and ed = fd(Id). We concatenate er and ed channel-wise and

feed the result to a 1x1 convolution layer fc(·) to reduce the number of total channels

to 512 followed by a subsequent pooling layer fl(·) to reduce the spatial dimension,

resulting in the output vector ec = fl(fc([er; ed])).

Dereverberation Network. To recover the clean speech audio, we use the UNet [240]

architecture, a fully convolutional network often used for image segmentation. We

first use the Short-Time Fourier Transform (STFT) to convert the reverberant input

audio Ar to a complex spectrogram Sr. We treat Sr as a 2-dimensional, 2-channel

image, where the horizontal dimension represents time, the vertical dimension repre-
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sents frequency, and the two channels represent the log-magnitude and phase angle.

Our UNet takes spectrograms of a fixed size of 256 × 256 as input, but in general

the duration of the speech audio we wish to dereverberate will be variable. There-

fore, the model processes the full input spectrogram using a series of overlapping,

sliding windows. Specifically, we segment the spectrogram along the time dimension

into a sequence of fixed-size chunks Sseg
r = {S1

r , S
2
r , ..., S

n
r } using a sliding window

of length s frames and 50% overlap between consecutive windows to avoid boundary

artifacts. To derive the ground-truth target spectrograms used in training, we per-

form the exact same segmentation operation on the clean source audio As to obtain

Sseg
s = {S1

s , S
2
s , ..., S

n
s }.

During training, when a particular waveform Sr is selected for inclusion in a

data batch, we randomly sample one of its segments Si
r to be the input to the model,

and choose the corresponding Si
s as the target. We first compute the output of the

VAN, ec, for the environment image associated with Sr. Next, Si
r is fed to the UNet’s

encoder to extract the intermediate feature map es = fenc(S
i
r). We then spatially

tile and concatenate ec channel-wise with es, and feed the fused features to the UNet

decoder, which predicts the source spectrogram segment Ŝi
s = fdec([es, ec]).

Spectrogram prediction loss. The primary loss function we use to train our

model is the Mean-Squared Error (MSE) between the predicted and ground-truth

spectrograms, treating the magnitude and phase separately. For a given predicted

spectrogram segment Ŝi
s, let M̂ i

s denote the predicted log-magnitude spectrogram,

P̂ i
s denote the predicted phase spectrogram, and M i

s and P i
s denote the respective

ground-truth magnitude and phase spectrograms. We define the magnitude loss as:

Lmagnitude = ||M i
s − M̂ i

s||2.

To address the issue of phase wraparound, we map the phase angle to its corresponding

rectangular coordinates on the unit circle and then compute the loss for the phase:

Lphase = || sin(P i
s) − sin(P̂ i

s)||2 + || cos(P i
s) − cos(P̂ i

s)||2.
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Reverb-visual matching loss. To reinforce the consistency between the visually-

inferred room acoustics and the reverberation characteristics learned by the UNet

encoder, we also employ a contrastive reverb-visual matching loss:

Lmatching(ec, es, e
n
s ) = max{d(fn(ec), fn(es)) − d(fn(ec), fn(ens )) + m, 0}.

Here, d(x, y) represents L2 distance, fn(·) applies L2 normalization, m is a margin,

and ens is a different speech embedding sampled from the same data batch. This loss

forces the embeddings output by the VAN and the UNet encoder to be consistent,

which we empirically show to be beneficial.

Training. Our overall training objective (for a single training example) is as follows:

Ltotal = Lmagnitude + λ1Lphase + λ2Lmatching,

where λ1 and λ2 are weighting factors for the phase and matching losses. To augment

the data, we further choose to rotate the image view for a random angle for each input

during training. This is possible because our audio recording is omni-directional and

is independent of camera pose. This data augmentation strategy prevents the model

from overfitting; without it our model fails to converge. It creates a one-to-many

mapping between reverb and views, forcing the model to learn a viewpoint-invariant

representation of the room acoustics.

Testing. At test time, we wish to re-synthesize the entire clean waveform instead of

a single fixed-length segment. In this case, we feed all of the segments for a waveform

Sr into the model and temporally concatenate all of the output segments. Because

consecutive segments overlap by 50%, during the concatenation step we only retain

the middle 50% of the frames from each segment and discard the rest. Finally, to re-

synthesize the waveform we use the Griffin-Lim algorithm [106] to iteratively improve

the predicted phase for 30 iterations, which we find works better than directly using

the predicted phase or using Griffin-Lim with a randomly initialized phase.
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6.4 Experiments

We evaluate our model by dereverberating speech for three downstream tasks:

speech enhancement (SE), automatic speech recognition (ASR), and speaker verifi-

cation (SV). We evaluate using both real scanned Matterport3D environments with

simulated audio as well as real-world data collected with a camera and mic.

Evaluation tasks and metrics. We report the standard metrics Perceptual Eval-

uation of Speech Quality (PESQ) [237], Word Error Rate (WER), and Equal Error

Rate (EER) for the three tasks, respectively. For ASR and SV, we use pretrained

models from the SpeechBrain [233] toolkit. We evaluate these models off-the-shelf on

our (de)reverberated version of the LibriSpeech test-clean set, and also explore fine-

tuning the model on the (de)reverberated LibriSpeech train-clean-360 data to ensure

all models have exposure to reverberant speech when training. For speaker verifica-

tion, we construct a set of 80k sampled utterance pairs consisting of different rooms,

mic placements, and genders to account for session variability, similar to [236].

Baseline models. In addition to evaluating the the clean and reverberant audio

(with no enhancement), we compare against multiple baseline dereverberation models:

1. MetricGAN+ [78]: a recently proposed state-of-the-art model for speech en-

hancement; we use the public implementation from SpeechBrain [233], trained

on our dataset. Following the original paper, we optimize for PESQ during

training, then choose the best-performing model snapshot (on the validation

data) specific to each of our downstream tasks.

2. HiFi-GAN [267]: a recent model for denoising and dereverberation. We use the

public implementation. ∗

3. WPE [205]: A statistical speech dereverberation model that is commonly used

for comparison.

∗https://github.com/rishikksh20/hifigan-denoiser

146

https://github.com/rishikksh20/hifigan-denoiser


SE ASR SV
PESQ WER FT EER FT

Anechoic (Upper bound) 4.64 2.50 2.50 1.62 1.62

Reverberant 1.54 8.86 4.62 4.69 4.57
MetricGAN+ [78] 2.33 7.49 4.86 4.67 2.75
HiFi-GAN [267] 1.83 9.31 5.59 4.30 2.49

WPE [205] 1.63 8.18 4.30 5.19 4.48

VIDA w/o VAN 2.32 4.92 3.76 4.67 2.61
VIDA w/ normal FoV 2.33 4.85 3.73 4.53 2.79

VIDA w/o matching loss 2.38 4.59 3.72 4.02 2.62
VIDA w/o human mesh 2.31 4.57 3.72 4.00 2.52
VIDA w/ random image 2.34 4.94 3.82 4.70 2.48

VIDA 2.37 4.44 3.66 3.97 2.40

Table 6.1: Results on multiple speech analysis tasks, evaluated on the LibriSpeech
test-clean set that is reverberated with our environmental simulator (with the ex-
ception of the “Anechoic (Upper bound)” setting, which is evaluated on the original
audio). FT refers to tests where the models are finetuned with the audio-enhanced
data. The relative improvement compared to Reverberant is included in parentheses.

We emphasize that all baselines are audio-only models, as opposed to our proposed

audio-visual model. Our multimodal dereverberation technique could extend to work

in conjunction with other newly-proposed audio-only models, i.e., ongoing architec-

ture advances are orthogonal to our idea.

Results on SoundSpaces-Speech. Table 6.1 shows the results for all models on

SE, ASR, and SV. First, since existing methods report results on anechoic audio, we

note the pretrained SpeechBrain model applied to anechoic audio (first row) yields er-

rors competitive with the SoTA [107], meaning we have a solid experimental testbed.

Comparing the results on anechoic vs. reverberated speech, we see that reverberation

significantly degrades performance on all tasks. Our VIDA model outperforms all

other models, and by a large margin on the ASR and SV tasks.without finetuning,

we achieve absolute improvements of 0.04 PESQ (1.71% relative improvement), 0.48%

WER (9.75% relative improvement), and 0.68% EER (14.56% relative improvement)
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over the best baseline in each case (which happens to be the audio-only version of

VIDA for both the ASR and SV tasks). The results are statistically significant ac-

cording to a paired t-test. After finetuning the ASR model, the gain is still largely

preserved at 0.64% WER (14.88% relative), although it is important to note that fine-

tuning downstream models on enhanced speech is not always feasible, e.g., if using

off-the-shelf ASR. Our results demonstrate that learning the acoustic propertiesof an

environment from visual signals is very helpful for dereverberating speech, enabling

the model to leverage information unavailable in the audio alone.

Ablations. To study how much VIDA leverages visual signals, we ablate the visual

network VAN (audio-only). Table 6.1 shows the results. All performance degrades

significantly, showing that visual acoustic features are helpful for dereveberation.

To understand how well VIDA works with a normal field-of-view (FoV) camera, we

replace the panorama image input with a FoV of 80 degrees randomly sampled from

the current view. All metrics drop compared to using a panorama, as expected. This

is expected, because the model is limited in what it can see with a narrower field

of view; the inferred room acoustics are impaired by not seeing the full environment

or missing where the speaker is. Compared to the audio-only ablation, however,

VIDA still performs better; even a partial view of the environment helps the model

understand the scene and dereverberate the audio. Next, we ablate the proposed

reverb-visual matching loss (“w/o matching loss”). Without it, VIDA’s performance

declines on all metrics. This shows by forcing the visual feature to agree with the

reverberation feature, our model learns a better representation of room acoustics. To

examine how much the model leverages the human speaker cues and uses the visual

scene, we evaluate VIDA on the same test data but with the 3D humanoid removed

(“w/o human mesh”) or train VIDA with random images (“w/ random image”) and

re-evaluate. All three metrics become worse. This shows our model pays attention to

both the presence of the human speaker and the scene geometry to better anticipate

reverberation.

Results on real data. Next, we deploy our model in the real world. We use
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SE ASR SV
PESQ WER EER

Anechoic (Upper bound) 4.64 2.52 1.42

Reverberant 1.22 18.39 3.91
MetricGAN+ [78] 1.62 21.42 5.70
HiFi-GAN [267] 1.33 24.05 5.21

VIDA w/o VAN 1.41 15.18 4.24
VIDA w/ normal FoV 1.44 14.71 3.79

VIDA 1.49 13.02 3.75

Table 6.2: Results on real data demonstrating sim2real transfer.

Atrium Conf. Room Classroom Corridor

Near-field 14.1 / 9.0 5.0 / 6.5 6.1 / 5.3 2.2 / 1.8
Mid-field 21.8 / 18.9 7.7 / 7.7 2.6 / 1.5 7.3 / 4.4
Far-field 52.4 / 50.5 22.0 / 6.7 5.9 / 6.8 25.2 / 21.1

Table 6.3: Breakdown of word error rate (WER) for VIDA without and with VAN
on real test data.

all models trained in simulation to dereverberate the real-world dataset (cf. Sec. 6.2)

before using the finetuned ASR/SV models to evaluate the enhanced speech. Table 6.2

shows the results of all models on real data. Reverberation does more damage to the

WER compared to in simulation. Although MetricGAN+ [78] has better PESQ, it

has a weak WER score. Our VIDA model again outperforms all baselines on ASR

and SV. This demonstrates the realism of the simulation and the capability of our

model to transfer to real-world data, a promising step for VIDA’s wider applicability.

Table 6.3 breaks down the ASR performance for VIDA without and with VAN

by environment type and speaker distance. The atrium is quite reverberant due to

the large space.Although the auditorium is similarly large, the space is designed to

reduce reverberation and thus both models have lower WER. The conference room

and the classroom have smaller sizes and are comparatively less reverberant. The

corridor only becomes reverberant when the speaker is far away. VIDA outperforms
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(a) Audio t-SNE (b) Visual t-SNE

Figure 6.5: t-SNE of audio and visual features colored by the distance to the speaker
(c) and RT60 (d).

VIDA w/o VAN in most cases, especially in highly reverberant ones.

Analyzing learned features. Figure 6.5a and 6.5b analyze our model’s learned

audio and visual features via 2D t-SNE projections [289]. For each sample, we

color the point according to either (c) the ground truth distance between the cam-

era/microphone and the human speaker or (d) the reverberation time for the audio

signal to decay by 60 dB (known as the RT60). Neither of these variables are available

to our model during training, yet when learning to perform deverberation, our model

exposes these high-level properties relevant to the audio-visual task. Consistent with

the quantitative results above, this analysis shows how our model captures elements

of the visual scene, room geometry, and speaker location that are valuable to proper

dereverberation.

Qualitative examples. Figure 6.6 shows a simulated and real-world example. As

we can see, the reverberant spectrogram is much blurrier compared to the clean spec-

trogram, while our predicted spectrogram removes those reverberations by leveraging

the visual cues of room acoustics.

6.5 Conclusions

In this chapter, we introduced the novel task of audio-visual dereverberation.

The proposed VIDA approach learns to remove reverb by attending to both the audio
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Panorama Image Clean Reverberant Enhanced

Figure 6.6: Example input images, clean spectrograms, reverberant spectograms and
spectrograms dereverberated by VIDA (top is from a scan, bottom is a real pano).
The speaker is out of view in the first case and distant in the second case (back of
the classroom). Though both received audio inputs are quite reverberant, our model
successfully removes the reverb and restores the clean source speech.

and visual streams, recovering valuable signals about room geometry, materials, and

speaker locations from visual encodings of the environment. In support of this task,

we develop a large-scale dataset providing realistic, spatially registered observations

of speech and 3D environments. VIDA successfully dereverberates novel voices in

novel environments more accurately than an array of baselines, improving multiple

downstream tasks.

One of the limitations of this work is the reliance on the large amount of

paired clean/reverberated audio along with images. This could be difficult to collect

in the real world because usually cameras only record the sound as the receiver, while

the source audio is often not captured. In this chapter, we rely on simulating the

room acoustics and corresponding images to avoid this problem. If we were to train

on real-world data for better performance on the real data, one possible solution is

pre-train the visual encoder with audio in a self-supervised way so that the visual

encoder already captures room acoustics features.

While VIDA outperforms audio-only baselines on an array of tasks, especially

ASR, perceptually, the difference is not significant. If the input audio has lots of

reverberation, the output audio often contains some distortion potentially because
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the input and output audios are very different, and L2 loss alone is not enough

to remove the excessive amount of reverberation. Both observations indicate more

research is needed to improve the perceptual quality in addition to improving machine

perception on various tasks by, for example, incorporating generative losses.

In this chapter, I showed how to infer room acoustics from visual observations

of the scene and use it to remove reverberation in the audio. One question someone

might ask is: is the opposite of this task possible, i.e., adding reverberation to audio

based on the visual information? Yes. It is possible, and in the next chapter, I

will show how to transform an audio clip to match the acoustics of an environment

specified in an image.
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Chapter 7: Visual Acoustic Matching

In Chapter 6, I demonstrated how to leverage the visual knowledge to help

remove reverberation in speech for better perception. However, sometimes the reverse

process is more desired, i.e., adding proper reverberation to the audio that corresponds

to the space. In this chapter, I will present a work that deals with that, which was

published in CVPR 2022 [39].

As discussed throughout this thesis, the audio we hear is always transformed

by the space we are in, as a function of the physical environment’s geometry, the

materials of surfaces and objects in it, and the locations of sound sources around us.

This means that we perceive the same sound differently depending on where we hear

it. For example, imagine a person singing a song while standing on the hardwood

stage in a spacious auditorium versus in a cozy living room with shaggy carpet. The

underlying song content would be identical, but we would experience it in two very

different ways.

For this reason, it is important to model room acoustics to deliver a realis-

tic and immersive experience for many applications in augmented reality (AR) and

virtual reality (VR). Hearing sounds with acoustics inconsistent with the scene is

disruptive for human perception. In AR/VR, when the real space and virtually re-

produced space have different acoustic properties, it causes a cognitive mismatch, and

the “room divergence effect” damages the user experience [300].

Creating audio signals that are consistent with an environment has a long

history in the audio community. If the geometry (often in the form of a 3D mesh) and

material properties of the space are known, simulation techniques can be applied to

generate a room impulse response (see Chapter 3 for more details). In the absence of

geometry and material information, the acoustical properties can be estimated blindly

from audio captured in that room (e.g., reverberant speech), then used to auralize
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Source Audio

Target Space

Output Audio

Figure 7.1: Goal of visual acoustic matching: transform the sound recorded in one
space to another space depicted in the target visual scene. For example, given source
audio recorded in a studio, re-synthesize that audio to match the room acoustics of a
concert hall.

a signal [145, 194, 266]. However, both approaches have practical limitations: the

former requires access to the full mesh and material properties of the target space,

while the latter gets only limited acoustic information about the target space from

the reverberation in the audio sample. Neither uses imagery of the target scene to

perform acoustic matching.

We propose a novel task: visual acoustic matching. Given an image of the

target environment and a source audio clip, the goal is to re-synthesize the audio as if

it were recorded in the target environment (see Figure 7.1). The idea is to transform

sounds from one space to another space by altering their scene-driven acoustic sig-

natures. Visual acoustic matching has many potential applications, including smart

video editing where a user can inject sounding objects into new backgrounds, film

dubbing to make a different actor’s voice sound appropriate for the movie scene, au-

dio enhancement for video conference calls, and audio synthesis for AR/VR to make

users feel immersed in the visual space displayed to them.

To address visual acoustic matching, we introduce a crossmodal transformer
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model together with a novel self-supervised training objective that accommodates

in-the-wild Web videos having unknown room acoustics.

Our approach accounts for two key challenges: how to faithfully model the

complex crossmodal interactions, and how to achieve scalable training data. Regard-

ing the first challenge, different regions of a room affect the acoustics in different

ways. For example, reflective glass leads to longer reverberation in high frequencies

while absorptive ceilings reduce the reverberation more quickly. Our model provides

fine-grained audio-visual reasoning by attending to regions of the image and how

they affect the acoustics. Furthermore, to capture the fine details of reverberation

effects—which are typically much smaller in magnitude than the direct signal—we use

1D convolutions to generate time-domain signals directly and apply a multi-resolution

generative adversarial audio loss.

Regarding the second key challenge, one would ideally have paired training

data consisting of a sound sample not recorded in the target space plus its proper

acoustic rendering for the scene shown in the target image, i.e., a source and target

audio for each visual scene in the training set. However, such a strategy requires

either physical access to the pictured environments, or knowledge of their room im-

pulse response functions—either of which severely limits the source of viable training

data. Meanwhile, though a Web video does exhibit strong correspondence between

its visual scene and the scene acoustics, it offers only the audio recorded in the target

space. Accounting for these tradeoffs, we propose a self-supervised objective that au-

tomatically creates acoustically mismatched audio for training with Web videos. The

key insight is to use dereverberation and acoustic randomization to alter the original

audio’s acoustics while preserving its content.

We demonstrate our approach on challenging real-world sounds and environ-

ments, as well as controlled experiments with realistic acoustic simulations in scanned

scenes. Our quantitative results and subjective evaluations via human studies show

that our model generates audio that matches the target environment with high per-
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ceptual quality, outperforming a state-of-the-art model that has heavier supervision

requirements [257] as well as traditional acoustic matching models.

I first introduce the visual acoustic matching task in Sec. 7.1, the dataset in

Sec. 7.2, our approach in Sec. 7.3 and lastly the results in Sec. 7.4.

7.1 The Visual Acoustic Matching Task

We introduce a novel task, visual acoustic matching. In this task, an audio

recording AS recorded in space S and an image IT of a different target space T are

provided as input. The goal is to predict AT , which has the same audio content as

AS but sounds as if it were recorded in space T with a microphone co-located with

IT ’s camera. Our goal is thus to learn a function f such that f(AS, IT ) = AT . The

microphone co-location is important because acoustic properties vary as the listener

location changes; inconsistent camera locations would lead to a perceived mismatch

between the visuals and acoustics. The space S can have arbitrary acoustic charac-

teristics, from an anechoic recording studio to a concert hall with significant reverber-

ation. We assume there is one sounding object, leaving the handling of background

sounds or interference as future work.

Importantly, our task formulation does not assume access to the impulse re-

sponse, nor does it require the input audio to be anechoic. In comparison, the Im-

age2Reverb [257] task requires access to both the impulse response and clean input

audio, and does not account for the co-location of the camera and microphone.

7.2 Datasets

We consider two datasets: simulated audio in scanned real-world environments

(Sec. 7.2.1), and in-the-wild Web videos with their recorded audio (Sec. 7.2.2). The

former has the advantage of clean paired training data for AT and AS as well as

precise ground truth for evaluating the output audio, but necessarily has a realism
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(a) (b)

Figure 7.2: Example images in (a) SoundSpaces and (b) AVSpeech.

gap. The latter has the advantage of total realism, but makes quantitative evaluation

more complex.

For both, we focus on human speech in indoor settings given its relevance to

many of the applications cited above, and due to the fact that human listeners have

strong prior knowledge about how reverberation should affect speech. However, our

model design is not specific to speech.

7.2.1 SoundSpaces-Speech Dataset

With the SoundSpaces platform [35], acoustics can be accurately simulated

based on 3D scans of real-world environments [29, 265, 312]. This allows highly

realistic rendering of arbitrary camera views and arbitrary microphone placements for

waveforms of the user’s choosing, accounting for all major real-world audio factors:

direct sounds, early specular/diffuse reflections, reverberation, binaural spatialization,

and effects from materials and air absorption.

We adopt a SoundSpaces-Speech dataset created in [42] consisting of paired

clean (anechoic) and reverberant audio samples together with camera views.∗ The

RIRs for 82 Matterport3D [29] environments are convolved with non-overlapping

speech clips from LibriSpeech [214]. A 3D humanoid of the same gender as the real

speaker is inserted at the speaker location and panorama RGB-D images are rendered

at the listener location. See Figure 7.2a. Excluding those samples where the speaker is

∗Note that [42] uses the data for dereverberation, not acoustic matching.
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very distant or out-of-view (for which the visual input does not capture the geometry

of the source location), there are 28,853/1,441/1,489 samples for the train/val/test

splits.

7.2.2 Acoustic AVSpeech Web Videos

Web videos offer rich and natural supervision for the association between vi-

suals and acoustics. We adopt a subset of the AVSpeech [70] dataset, which contains

3-10 second YouTube clips from 290k videos of single (visible) human speakers with-

out interfering background noises. We automatically filter the full dataset down to

those clips likely to meet our problem formulation criteria: 1) microphone and cam-

era should be co-located and at a position different than the sound source (so that

the audio contains not only the source speech but also the reverberation caused by

the environment), and 2) audio recording should be reverberant (so that the physical

space has influenced the audio). Cameras in this dataset are typically static, and

thus we use single frames and their corresponding audio for this task. This yields

113k/3k/3k video clips for train/val/test splits. We refer to this filtered dataset as

Acoustic AVSpeech. See Figure 7.2b.

7.3 Approach

We present the Audio-Visual Transformer for Audio Generation model (AViTAR)

(Figure 7.3). AViTAR learns to perform crossmodal attention based on sequences of

convolutional features of audio and images and then synthesizes the desired wave-

form ÂT . We first define the audio-visual features (Sec. 7.3.1) and their crossmodal

attention (Sec. 7.3.2), followed by our approach to waveform generation (Sec. 7.3.3).

Finally, we present our acoustics alteration idea to enable learning from in-the-wild

video (Sec. 7.3.4).
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Figure 7.3: AViTAR model illustration. We extract visual feature sequence Vi from
input image IT with a ResNet-18 [115], and audio feature sequence Ai from input
audio AS with 1D convolutions. Vi and Ai are passed into crossmodal encoders for
crossmodal reasoning. The output feature sequence Mi is processed and upsampled
with 1D convolutions to recover the output of the same temporal length. Finally,
we use a multi-resolution speech GAN loss to guide the audio synthesis to be high
fidelity. The acoustics alteration process is applied to the target audio during training
if and only if there is no mismatched audio, e.g., on the Acoustic AVSpeech dataset.

7.3.1 Audio-Visual Feature Sequence Generation

To apply crossmodal attention, we first need to generate sequences of audio

and visual features, where each element in the sequence represents features of a part of

the input space. For visual sequence generation from image IT , we use ResNet18 [115]

and flatten the last feature map before the pooling layer, yielding the visual feature

sequence Vi.

For audio feature sequence generation from source audio AS, we generate au-

dio features Ai from the waveform directly with stacked 1D convolutions. We first use

one 1D conv layer to embed the input waveform into a latent space. We then apply

a sequence of strided 1D convolutions, each doubling the channel size while down-

sampling the input sequence. The output audio features are a sequence of vectors

of size S, with length downsampled D times from the input. Weight normalization

is applied to 1D conv layers. We rather than STFT spectrograms so that the audio

features are not limited to one resolution and can be optimized end-to-end to learn
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the most important features for the visual acoustic matching task.

7.3.2 Crossmodal Encoder

Prior work often models audio-visual inputs in a simplistic manner by repre-

senting the image feature with one single vector and concatenating it with the audio

feature [211, 86, 70, 323, 88, 42, 35]. However, for visual acoustic matching, it is

important to reason how different regions of the space contribute to the acoustics dif-

ferently. For example, a highly reflective glass door leads to longer reverberation time

for high frequencies, while absorptive ceilings diminish that quickly. Thus, we propose

to attend to image regions to reason how different image patches contribute to the

acoustics, leveraging recent advances on the transformer architecture [290, 149, 107].

For crossmodal attention, we first adopt the conformer variant [107] of encoder

blocks, which adds one convolution layer inside the block for modeling local interaction

for speech features. Based on this block, we insert one crossmodal attention layer Acm

after the first feed-forward layer, described as follows:

Acm(Ai, Vi) = softmax(
AiV

T
i√
S

)Vi, (7.1)

where the attention scores between the two sequences of features Ai and Vi are first

calculated by dot-product, then normalized by softmax, scaled by 1√
S

, and finally

used to weight the visual features Vi. This crossmodal attention allows the model

to attend to different image region features and reason about how they affect the

reverberation. Absolute positional encoding is added to the visual encoding. After

passing Vi and Ai through N encoder blocks, we obtain the fused audio-visual feature

sequence Mi, which has the same length as Ai.

7.3.3 Waveform Generation and Loss

Recent audio-visual work generates audio outputs by inferring spectrograms

then using ISTFT reconstruction to obtain a waveform (e.g., [316, 88, 70, 86, 323,
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322]). While sensible for source separation, where the target signal is a subset of the

source signal, ratio mask prediction is inadequate for our task, because reverberation

might occupy periods of silence in the input audio and the ratio will be unbounded (as

we verify in results). Futhermore, generating audio based on spectrograms is limiting

because 1) predicting the coherent phase component remains challenging [1, 51], and

2) the spectrogram has one fixed resolution (one FFT size, hop length, and window

size).

Instead, we aim to synthesize time-domain signals directly, skipping the in-

termediate spectrogram generation step and allowing more flexibility for what losses

can be imposed, inspired by recent advances on time-domain speech synthesis [287,

222, 151, 157]. Specifically, with the fused audio-visual feature sequence Mi, we ap-

ply a sequence of transposed strided 1D convolutions, each halving the channel size

while upsampling the input sequence, which is exactly the reverse operation of the

audio encoding. Altogether, we upsample the audio sequence D times and obtain a

waveform of the same length as the input.

Next we incorporate a multi-resolution generative loss. We found directly

minimizing a Euclidean distance based loss between the target ground truth audio

AT and the inferred audio ÂT leads to distortion in the generated audio on this task

(cf. Figure 7.5 and Tab. 5.3). Therefore, to let the model learn how to reverberate

the input speech properly, we employ a generative adversarial loss where a set of

discriminators operating at different resolutions are trained to identify reverberation

patterns and guide the generated audio to sound like real examples. Specifically, we

apply an adversarial loss [151] comprised of the generator and discriminator losses:

LG =
K∑
k=1

(LAdv(G;Dk) + λ1LFM(G;Dk)) + λ2LMel(G),

LD =
K∑
k=1

LAdv(Dk;G),

where each Dk is a sub-discriminator that operates at one of K different scales and

periods for distinguishing the fake and real examples. LAdv is the LS-GAN [180]
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Figure 7.4: Acoustics alteration process. Spectrograms of the resulting audio after
each step are shown. We first dereverberate the target audio AT to obtain cleaner
audio AC , randomize its acoustics by applying an impulse response of another envi-
ronment to obtain AR, and finally, add Gaussian noise to AR to create AS. Notice
how the spectral pattern changes in this process.

training objective, which trains the generator to fake the discriminator and trains

the discriminator to distinguish real examples from fake ones. For the generator

G, a feature matching loss [157] LFM is used, which is a learned similarity metric

measured by the difference in features of the discriminator between a ground truth

sample and a generated sample. An additional mel-spectrogram loss LMel is imposed

on the generator for improving the training efficiency and fidelity of the generated

audio. λ1 and λ2 are two weighting factors for these two losses. The generator loss

LG and discriminator loss LD are trained alternatively competing against each other.

For more details, refer to [151].

7.3.4 Acoustics Alteration for Self-Supervision

The training paradigm differs in one important way depending on the source

of training data (cf. Sec. 7.2). For the simulated SoundSpaces data, we have access

to an anechoic audio sample AS as well as the ground truth reverberated sample AT

as it should be rendered in the target environment for a camera seeing view IT . This
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means we can train to (implicitly) discover the mapping that takes the target image

to an RIR which, when convolved with AS, yields AT .

For the in-the-wild video data (AVSpeech), however, we have only AT and IT

to train, i.e., we only observe sounds that do match their respective views. Thus, to

leverage unannotated Web video, we need to create an audio clip that preserves the

target audio content but has mismatched acoustics. Figure 7.4 illustrates the steps

for this process. First we strip away the original acoustics of the target environment

by performing dereverberation on the audio AT alone with the pretrained model from

[42]. Since dereverberation is imperfect, there is residual acoustic information in the

dereverberated output AC , meaning that the resulting “clean” audio is still predictive

of the target environment.

Thus, we subsequently randomize the acoustics by convolving that audio with

an impulse response of another environment, yielding AR; that IR is randomly chosen

from the corresponding train/val/test split of SoundSpaces-Speech. The idea is to

transform the semi-clean intermediate sound into another space to create more acous-

tic confusion, thereby forcing the model to learn from the target image. Finally, to

further suppress the residual acoustics from the training environment, we add Gaus-

sian noise with SNR randomly sampled from 2-10 dB to AR and obtain the training

source audio AS. In short, with this strategy, we are able to leverage readily available

Web videos for our proposed task, despite its lack of ground truth paired audio.

7.4 Experiments

We validate our model on two datasets using comprehensive metrics and base-

lines.

Evaluation metrics. We measure the quality of the generated audio from three

aspects: 1) the closeness to the ground truth (if ground truth audio is available),

as measured by STFT Distance, i.e., the MSE between the generated and true
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SoundSpaces-Speech Acoustic AVSpeech
Seen Unseen Seen Unseen

STFT RTE MOSE STFT RTE MOSE RTE MOSE RTE MOSE

Input audio 1.192 0.331 0.617 1.206 0.356 0.611 0.387 0.658 0.392 0.634
Blind Reverb. [295] 1.338 0.044 0.312 - - - - - - -
Image2Reverb [257] 2.538 0.293 0.508 2.318 0.317 0.518 - - - -

AV U-Net [86] 0.638 0.095 0.353 0.658 0.118 0.367 0.156 0.570 0.188 0.540

AViTAR w/o visual 0.862 0.140 0.217 0.902 0.186 0.236 0.194 0.504 0.207 0.478
AViTAR 0.665 0.034 0.161 0.822 0.062 0.195 0.144 0.481 0.183 0.453

Table 7.1: Results on the SoundSpaces-Speech and Acoustic AVSpeech datasets for
Seen and Unseen environments. All input audio at test time is novel (unheard during
training). Note that the STFT metric is applicable only for SoundSpaces, where
we can access the ground truth AT ’s spectrogram. For all metrics, lower values are
better. Standard errors for STFT, RTE and MOSE are all less than 0.04, 0.013s and
0.01 on SoundSpaces-Speech. Standard errors for RTE and MOSE are all less than
0.005s and 0.01 on Acoustic AVSpeech.

target audio’s magnitude spectrograms; 2) the correctness of the room acoustics,

as measured by the RT60 Error (RTE) between the true and inferred AT ’s RT60

values. RT60 indicates the reverberation time in seconds for the audio signal to decay

by 60 dB, a standard metric to characterize room acoustics. We estimate the RT60

directly from magnitude spectrograms of the output audio, using a model trained

with disjoint SoundSpaces data, since impulse responses are not available for the

target environments; and 3) the speech quality preserved in the synthesized speech,

measured by the Mean Opinion Score Error (MOSE), which is the difference in

speech quality between the true target audio and generated audio, as assessed by a

deep learning based objective model MOSNet [170].†

Both the RTE and MOSE metrics are content-invariant and thus useful for

evaluation when only audio with correct acoustics and mismatched content is available

as ground truth, i.e., Web videos.

†By taking the difference with the true target audio’s MOS score (rather than simply the output’s score), we
account for the fact that properly reverberated speech need not have high speech quality.
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In addition, we conduct user studies to evaluate whether a given audio is

perceived as matching the room acoustics of the reference image.

Seen and unseen environments. On both datasets, we evaluate by pairing the

source audio AS with a target image IT coming from either the training set (Seen)

or test set (Unseen). The audio is always unobserved in training. The Seen case is

useful to match the audio to scenes where we have video recordings (e.g., the film

dubbing case). The Unseen case is important for injecting room acoustics depicted in

novel images (e.g., to match sounds for a random Web photo being used as a Zoom

call background).

Baselines. We consider the following baselines:

1. Input audio. This is the naive baseline that does nothing, simply returning

the input AS as output.

2. Blind Reverberator. This is a traditional acoustic matching approach [295]

using audio recorded in the target space T as reference with content different

from AT . It first estimates RT60 and DRR from the reference audio (estimators

are trained using simulated IRs), and then synthesizes the target IR by shaping

an exponentially decaying white noise based on those two parameters. Unlike

our model, this method requires reference audio at test time and IRs at training

time. It is therefore inapplicable for the Unseen case (no reference audio) and

AVSpeech (no training IRs).

3. Image2Reverb [257]. This is a recent approach that trains an IR predictor

from images, then convolves the predicted IRs with AS to obtain the target

audio. This model requires access to the IR during training and thus is not

applicable to the Acoustic AVSpeech dataset. We use the authors’ code and

convert the SoundSpaces-Speech data into the format of their dataset. We

replace their depth prediction model with the ground truth depth image, to

improve this baseline’s performance.
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4. AV U-Net [86]. This is an audio-visual model originally proposed for visu-

ally guided spatial sound generation based on a U-Net network for processing

audio spectrograms. We adapt it for visual acoustic matching by removing the

ratio mask prediction (which we find does not work well). Instead, we feed

in a magnitude spectrogram, predict the target magnitude spectrograms, and

generate the time-domain signals with Griffin Lim [106]. This baseline helps

isolate the impact of our proposed crossmodal attention architecture compared

to the common U-Net approach [86, 211, 88, 51, 322].

5. AViTAR w/o visual. This model is solely audio-based and is the same as our

proposed model except that it does not have visual inputs or the crossmodal

attention layer.

7.4.1 Results on SoundSpaces-Speech

For the SoundSpaces data, we have access to clean anechoic speech, which we

use as the input AS. The simulations offer a clean testbed for this task, showing the

potential of each model when it is noise-free and the visuals reveal the full geometry

via the panoramic RGB-D images.

Table 7.1 (left) shows the results. As expected, the clean input audio baseline

does poorly because it does not account for the target environment. Our AViTAR

model has the lowest RT60 error and MOS error, indicating that it best predicts the

correct acoustics from images, injects them into the speech, and synthesizes high-

quality audio. The AV U-Net baseline has slightly lower STFT distance than ours,

likely because its training objective is to minimize STFT distance. However it has

higher perceptual errors (RTE and MOSE). Image2Reverb’s [257] high errors reveal

the difficulty of our task and data, and its inapplicability to AVSpeech highlights

our model’s self-supervised training advantage. Despite having the estimated RT60

as input (and thus having low RT60 error), Blind Reverberator’s STFT and MOS

errors are much higher than AViTAR’s, showing that images are a promising way to
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characterize room acoustics beyond the traditional RT60. Plus, its inapplicability for

the other scenarios highlights fundamental advantages of AViTAR. Without access to

visual information (“w/o visual”), AViTAR can only learn to add an average amount

of reverberation to the input audio; this confirms that our model successfully learns

the acoustics from the visual scene. Although this variant has higher RT60 error than

AV U-Net, its MOS error is lower because the audio quality is better.

Ablations. Table 7.2 shows results for ablations on unseen images. For the model

architecture, to understand if attending to different image regions with crossmodal

attention is helpful, we train the full model with the length of visual feature sequence

reduced to one by mean pooling the final ResNet feature map (“w/ pooled visual

feature”). This model underperforms the full model on both STFT and RT60 metrics,

showing that the audio-visual attention leads to a better visual understanding of room

acoustics. Next we ablate the generative loss and replace it with the non-generative

multi-resolution STFT loss [157] (“w/o generative loss”), which slightly improves the

STFT error but leads to a large drop on the acoustics recovery and speech quality.

Despite being multi-resolution, without learnable discriminators to learn to model

those fine reverberation details, the audio quality gets worse.

The synthetic dataset provides access to meta information useful to evaluate

whether and how much AViTAR reasons about different visual properties. The loca-

tion of the sound source matters for acoustics because it directly influences acoustic

characteristics like the direct-to-reverberant ratio (DRR). When we remove the 3D

humanoid from the scene (“w/o human”) in all test images, all error metrics increase,

which indicates that our model reasons about the location of the sound source in the

image for accurate acoustic matching. To understand if the model learns meaningful

information from the visuals, we replace the target image with a random image (“w/

random image”); this significantly harms our model’s performance.
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AViTAR STFT RTE (s) MOSE

Full model 0.822 0.062 0.195
w/ pooled visual feature 0.850 0.067 0.193

w/o generative loss 0.777 0.081 0.314
w/o human 0.884 0.139 0.218

w/ random image 0.940 0.236 0.250

Table 7.2: Ablations on model design and data.

7.4.2 Results on Acoustic AVSpeech

Next, we train our model on the in-the-wild AVSpeech videos, and test it on

novel clean speech clips from LibriSpeech [214] (AS) paired with target images (IT )

from AVSpeech. Here we do not have ground truth for the target speech, so we

evaluate with RTE and MOSE.

Table 7.1 (right) shows the results. Our proposed AViTAR model achieves

the lowest RT60 error compared to all baselines. This shows our model trained in its

self-supervised fashion successfully generalizes to novel images and novel audio, and

demonstrates we can do acoustic matching even for non-anechoic inputs. AViTAR’s

MOS error is also the lowest compared to all baselines, showing that it is able to

synthesize high-fidelity audio while injecting the proper amount of reverberation into

the speech. The absolute errors on AVSpeech are higher than on SoundSpaces, which

makes sense because the YouTube imagery is more variable, and it has a narrower

field of view and no depth, making the geometry and materials of the scene only

partly visible.

Ablations on acoustic alteration. Table 7.3 shows ablations on the proposed

acoustics alteration strategy. In short, all three steps are necessary to create an

acoustic mismatch with the image, thereby forcing the model to recover the correct

acoustics based on the image and allowing better generalization to novel sounds.
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Image Input AV U-Net AViTAR GT Target

Input  0.01s
Office  0.34s Garage  0.40s     Auditorium  0.58s

Image2reverb

Figure 7.5: Qualitative predicted audio. For all audio clips, we compute the mag-
nitude spectrogram, convert the magnitude to dB, and plot the spectrogram with
x-axis spanning from 0 to 1.28 s (left to right) and y-axis from 0 to 3000 Hz (bot-
tom to top). Row 1: SoundSpaces-Speech example where the target space is a large
empty room with a lot of reverberation. Our model predicts the audio closest to the
target clip. AV U-Net’s spectrogram is too smoothed compared to ours and misses
some fine reverb details, which leads to perceptual distortion. Row 2: examples on
Acoustic AVSpeech (unseen images). We feed one clean audio clip to match three
different scenarios (office, garage, auditorium). From left to right, the audio spectro-
gram becomes more reverberant as phoneme patterns get extended and blurred on
the temporal axis (est. RT60 times shown). NB: AViTAR processes waveforms, not
spectrograms; here they are for visualization.

User study. To supplement the quantitative metrics and directly capture the per-

ceptual quality of the generated samples, we next conduct a user study. We show

participants the image of the target environment IT , the accompanying ground truth

audio clip AT as reference, and paired audio clips ÂT generated by AViTAR and each

baseline. We ask participants to select the clip that most sounds as if it were recorded

in the target environment and best matches the reverberation in the given clip. We

select 30 reverberant examples from SoundSpaces-Speech and AVSpeech and ask 30

participants to complete the assignment on MTurk.

Table 7.4 shows the resulting preference scores. Compared to each baseline,

AViTAR is always preferred. Note that no participant has a background in acous-

tics, and some might simply pick the one that sounds “clean” rather than having

the correct room acoustics. This may be the reason even the anechoic input has a
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Acoustics Alteration Seen Unseen

Dereverb. + Randomization + Noise 0.144 0.183
Dereverb. + Randomization 0.178 0.197

Dereverb. + Noise 0.170 0.208
Dereverb. 0.230 0.250

AT + Randomization + Noise 0.236 0.249

Table 7.3: Ablations on acoustics alteration. RTE is reported.

SoundSpaces AVSpeech

Input Speech 42.1% / 57.9% 40.1% / 59.9%
Image2Reverb [257] 25.9% / 74.1% - / -

AV U-Net [86] 29.8% / 70.2% 27.2% / 72.8%
AViTAR w/o visual 39.6% / 60.4% 46.3% / 53.9%

Table 7.4: User study results. X%/Y% indicates among all paired examples for
this baseline and AViTAR, X% of participants prefer this baseline while Y% prefer
AViTAR.

higher preference score than the U-Net model. Despite the lack of domain knowledge,

participants still consistently favor our model over other baselines.

Qualitative examples. Figure 7.5 shows example outputs.

7.5 Conclusions

We proposed the visual acoustic matching task and introduced the first model

to address it. Given an image and audio clip, our method injects realistic room

acoustics to match the target environment. Our results validate their realism with

both objective and perceptual measures. Importantly, the proposed model is trainable

with unannotated, in-the-wild Web videos.

To leverage Web videos, I proposed the acoustic alteration strategy to create

self-supervision. The first step in this process is dereverberation with an off-the-shelf

model that is not perfect. To overcome the residual acoustics, I further randomize
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the acoustics and add noise. However, the last two steps inject biases in their own

ways and affect the generalization. One possible solution to this is to train the

dereverberation model and acoustic matching model at the same time so that they

can jointly optimize [260].

Another limitation of this work is that the proposed AViTAR model does

audio processing, audio-visual crossmodal reasoning, and audio generation together.

While this end-to-end approach makes modeling easier, it requires more computation

resources and a longer time to train the model. One way to decouple the crossmodal

reasoning and generation is to break down the pipeline into two stages. In the first

stage, one model generates intermediate audio representation without caring about

the quality, and in the next stage, another model generates audio with high fidelity

from this representation. This approach has its own tradeoff as well, that is the

potential risk in accumulating errors from the multi-stage learning.

For this task, evaluation is also non-trivial. Measuring the acoustic properties

of in-the-wild data (YouTube speech videos) is an open challenge due to the lack

of robust solutions. To deal with that, I trained an RT60 predictor in simulation

and evaluated it on the real data, which unavoidably suffered from the sim2real gap.

Human evaluation is a more desired measurement, but it is not scalable. In the future,

metrics for approximating human perception are needed to improve the evaluation.

In this chapter, I demonstrated how to transform audio clips to match the

acoustics of spaces from images, assuming the visuals of the target environment or

location are given. In some applications, that might be the case. For example,

sometimes, we might desire to generate sounds from a reference image plus a pose

offset without having access to the target visuals directly. In the next chapter, I will

show how to transform the sound from one viewpoint to another in the same space.
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Chapter 8: Novel-View Acoustic Synthesis

In Chapter 6 and Chapter 7, I discussed how we could either remove reverber-

ation or add reverberation based on visuals, where input visuals characterize views at

the input viewpoint. In some applications, the target locations might not be given di-

rectly, instead, we might have visuals from a source viewpoint and the relative change

in camera poses as inputs. This is often the case for reconstructing novel views from a

reference view. In this chapter, I will present the acoustic version of this task, that is,

given the audio-visual observations of a source viewpoint, how do we synthesize the

sound of another viewpoint in the same space? This work was published at CVPR

2023 [41].

Replaying a video recording from a new viewpoint∗ has many applications in

cinematography, video enhancement, and virtual reality. For example, it can be used

to edit a video, simulate a virtual camera, or, given a video of a personal memory,

even enable users to experience a treasured moment again—not just on a 2D screen,

but in 3D in a virtual or augmented reality, thus ‘reliving’ the moment.

While the applications are exciting, there are still many unsolved technical

challenges. Recent advances in 3D reconstruction and novel-view synthesis (NVS)

address the problem of synthesizing new images of a given scene [186, 182, 224].

However, thus far, the view synthesis problem is concerned with creating visuals alone;

the output is silent or at best naively adopts the sounds of the original video (from

the “wrong” viewpoint). Without sound, the emotional and cognitive significance of

the replay is severely diminished.

In this work, we address this gap and introduce the new task of novel-view

acoustic synthesis (NVAS). The goal of this task is to synthesize the sound in a scene

∗We use “viewpoint” to mean a camera or microphone pose.
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target viewpoint
pose

Figure 8.1: Novel-view acoustic synthesis task. Given audio-visual observations
from one viewpoint and the relative target viewpoint pose, render the sound received
at the target viewpoint. Note that the target is expressed as the desired pose of the
microphones; the image at that pose (right) is neither observed nor synthesized.

from a new acoustic viewpoint, given only the visual and acoustic input from another

source viewpoint in the same scene (Fig. 8.1).

NVAS is very different from the existing NVS task, where the goal is to recon-

struct images instead of sounds, and these differences present new challenges. First,

the 3D geometry of most real-life scenes changes in a limited manner during the

recording. On the contrary, sound changes substantially over time, so the reconstruc-

tion target is highly dynamic. Secondly, visual and audio sensors are very different.

A camera matrix captures the light in a highly-directional manner, and a single image

comprises a large 2D array of pixels. In contrast, sounds are recorded with one or two

microphones which are at best weakly-directional, providing only a coarse sampling

of the sound field. Thirdly, the frequency of light waves is much higher than that of

sound waves; the length of audio waves is thus larger to the point of being comparable

to the size of geometric features of the scene, meaning that effects such as diffrac-

tion are often dominant, and spatial resolution is low. As a result, techniques that

require spatial precision, such as triangulation and segmentation, are not applicable

to audio. Lastly, sounds mix together, making it difficult to segment them, and they

are affected by environmental effects such as reverberation that are distributed and
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largely unobservable.

While the NVS and NVAS tasks are indeed very different, we hypothesize that

NVAS is an inherently multimodal task. In fact, vision can play an important role

in achieving accurate sound synthesis. First, establishing correspondences between

sounds and their sources as they appear in images can provide essential cues for resyn-

thesizing the sounds realistically. For instance, human speech is highly directional

and sounds very differently if one faces the speaker or their back, which can only

be inferred from visual cues. In addition, the environment acoustics also affect the

sound one hears as a function of the scene geometry, materials, and emitter/receiver

locations. The same source sounds very differently if it is located in the center of

a room, at the corner, or in a corridor, for example. In short, vision provides cues

about space and geometry that affect sound, and are difficult to estimate from the

sound alone.

In order to validate our hypothesis, we propose a novel visually-guided acoustic

synthesis network that analyzes audio and visual features and synthesizes the audio at

a target location. More specifically, the network first takes as input the image observed

at the source viewpoint in order to infer global acoustic and geometric properties of

the environment along with the bounding box of the active speaker. The network

then reasons how the speaker and scene geometry change in 3D based on the relative

target pose with a fusion network. We inject the fused features into audio with a gated

multi-modal fusion network and model the acoustic changes between viewpoints with

a time-domain model.

In order to conduct our experiments on the new NVAS task, we require suit-

able training and benchmarking data, of which currently there is none available. To

address that, we contribute two new datasets: one real (Replay-NVAS) and one syn-

thetic (SoundSpaces-NVAS). The key feature of these datasets is to record the sight

and sound of different scenes from multiple cameras/viewpoints. Replay-NVAS con-

tains video recordings of groups of people performing social activities (e.g., chatting,
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watching TV, doing yoga, playing instruments) from 8 surrounding viewpoints simul-

taneously. It contains 37 hours of highly realistic everyday conversation and social

interactions in one home-like environment. To our knowledge, Replay-NVAS repre-

sents the first large-scale real-world dataset enabling NVAS. This dataset would also

greatly benefit many other existing tasks including NVS, active speaker localization,

etc. For SoundSpaces-NVAS, we render 1.3K hours of audio-visual data based on

the SoundSpaces [40] platform. Using this simulator, one can easily change the scene

geometry and the positions of speakers, cameras, and microphones. This data serves

as a powerful test bed with clean ground truth for a large collection of home environ-

ments, offering a good complement to Replay-NVAS. For both datasets, we capture

binaural audio, which is what humans perceive with two ears. Together the datasets

contain 1,337 hours of audio-visual capture, with 1,032 speakers across 121 3D scenes.

Datasets are publicly available for future research. †

We show that our model outperforms traditional signal processing approaches

as well as learning-based baselines, often by a substantial margin, in a quantitative

evaluation and a human study. We show qualitative examples where the model pre-

dicts acoustic changes according to the viewpoint changes, e.g., left channel becomes

louder when the viewpoint changes from left to right. In a nutshell, we present the

first work that deals with novel-view acoustic synthesis, and contribute two large-scale

datasets along with a novel neural rendering approach for solving the task.

I first introduce the novel-view acoustic synthesis task in Sec. 8.1, the dataset

in Sec. 8.2, our approach in Sec. 8.3 and lastly the results in Sec. 8.4.

8.1 The Novel-View Acoustic Synthesis Task

We introduce a new task, novel-view acoustic synthesis (NVAS). Assuming

there are N sound emitters in the scene (emitter i emits sound Ci from location Li),

†https://replay-dataset.github.io
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given the audio AS and video VS observed at the source viewpoint S, the goal is to

synthesize the audio AT at the target viewpoint T , as it would sound from the target

location, specified by the relative pose PT of the target microphone (translation and

orientation) with respect to the source view (Fig. 8.1). Furthermore, we assume that

the active sound emitters in the environment are visible in the source camera, but we

make no assumptions about the camera at the target location.

The sound at any point R is a function of the space:

AR = F(L1,...,N , C1,...,N , R | E), (8.1)

where R is the receiver location (S or T ) and E is the environment. The emitted

sounds Ci are not restricted to speech but can be ambient noise, sounding objects,

etc. Our goal here is to learn a transfer function T(·) defined as AT = T(AS, VS, PT ),

where S, T, L1,...,N , C1,...,N , E are not directly given and need to be inferred from VS

and PT , which makes the task inherently multi-modal.

This task is challenging because the goal is to model the sound field of a

dynamic scene and capture acoustic changes between viewpoints given one pair of

audio-visual measurements. While traditional signal processing methods can be ap-

plied, we show in Sec. 8.4 that they perform poorly. In this work, we present a

learning-based rendering approach.

8.2 Datasets

We introduce two datasets for the NVAS task: live recordings (Sec. 8.2.1), and

simulated audio in scanned real-world environments (Sec. 8.2.2) (see Fig. 8.2). The

former is real and covers various social scenarios, but offers limited diversity of sound

sources, viewpoints and environments, and is noisy. The latter has a realism gap, but

allows perfect control over these aforementioned elements.

Both datasets focus on human speech given its relevance in applications. How-

ever, our model design is not specific to speech. For both datasets, we capture binau-
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Figure 8.2: Example source and target views for the two introduced datasets: Replay-
NVAS (left) and SoundSpaces-NVAS (right).

ral audio, which best aligns with human perception. Note that for both datasets, we

collect multiple multi-modal views for training and evaluation; during inference the

target viewpoint(s) (and in some cases target environment) are withheld.

8.2.1 The Replay-NVAS Dataset

Replay-NVAS contains multi-view captures of acted scenes in apartments. We

capture 46 different scenarios (e.g., having a conversation, having dinner, or doing

yoga) from 8 different viewpoints. In total, we collect 37 hours of video data, involving

32 participants across all scenarios.

In each scenario, we invite 2–4 participants to act on a given topic. Each

participant wears a near-range microphone, providing a clean recording of their own

speech. The scene is captured by 8 DLSR cameras, each augmented with a 3Dio

binaural microphone. In this way, the data captures video and audio simultaneously

from multiple cameras, resulting in 56 possible source/target viewpoint combinations

for each scene. The videos are recorded at 30 FPS and the audio is recorded with a

48k sampling rate. We use a clapper at the beginning of the recording for temporal

synchronization. Each scenario lasts 3–8 min. We use off-the-shelf software for multi-

view camera calibration.
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To construct the dataset, we extract one-second long clips from each video

with overlapping windows. We automatically remove silent and noisy clips based on

the energy of near-range microphones, which results in 77K/12K/2K clips in total for

train/val/test. During training, for one sample, we randomly select two out of eight

viewpoints, one as the source and one as the target.

This dataset is very challenging. It covers a wide range of social activities.

It is harrowed by ambient sound, room reverberation, overlapping speech and non-

verbal sounds such as clapping and instruments. Participants can move freely in the

environment. We believe that this data will be useful to the community beyond the

NVAS task as it can be used for benchmarking many other problems, including active

speaker localization, source separation, and NVS.

8.2.2 The SoundSpaces-NVAS Dataset

In this dataset, we synthesize multi-view audio-visual data of two people hav-

ing conversations in 3D scenes. In total, we construct 1.3K hours of audio-visual data

for a total of 1,000 speakers, 120 3D scenes and 200K viewpoints.

Our goal is to construct audio-visual data with strong spatial and acoustic cor-

respondences across multiple viewpoints, meaning that the visual information should

indicate what the audio should sound like, e.g., observing speaker on the left should

indicate the left ear is louder and observing speaker at a distance should indicate

there is higher reverberation. We use the SoundSpaces 2.0 platform [40], which al-

lows highly realistic audio and visual rendering for arbitrary camera and microphone

locations in 3D scans of real-world environments [29, 265, 312]. It accounts for all ma-

jor real-world acoustics phenomena: direct sounds, early specular/diffuse reflections,

reverberation, binaural spatialization, and effects from materials and air absorption.

We use the Gibson dataset [312] for scene meshes and LibriSpeech [214] for

speech samples. As we are simulating two people having conversations, for a given

environment, we randomly sample two speaker locations within 3 m and insert two

178



copyright-free mannequins (one male and one female) at these two locations.‡ We

then randomly sample four nearby viewpoints facing the center of the two speakers

at a height of 1.5 m (Fig. 8.2, right). For each speaker, we select a speech sample

from LibriSpeech with matching gender. We render images at all locations as well

as binaural impulse response for all pairs of points between speakers and viewpoints.

The received sound is obtained by convolving the binaural impulse response with the

speech sample.

During training, for one sample, we randomly sample two out of four rendered

viewpoints, one as the source and one as the target. We also randomly choose one

speaker to be active, simulating what we observe on the real data (i.e., usually only

one person speaks at a time).

8.3 Visually-Guided Acoustic Synthesis

We introduce a new method, Visually-Guided Acoustic Synthesis (ViGAS),

to address the NVAS problem, taking as input sound and an image and outputting

the sound from a different target microphone pose.

ViGAS consists of five components: ambient sound separation, active speaker

localization, visual acoustic network, acoustic synthesis, and temporal alignment.

The high-level idea is to separate the observed sound into primary and ambient,

extract useful visual information (active speaker and acoustic features), and use this

information to guide acoustic synthesis for the primary sound. Temporal alignment

is performed during training for better optimization. ViGAS is discussed in detail

next and summarised in Fig. 8.3.

‡https://renderpeople.com/free-3d-people
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PT

<latexit sha1_base64="faeeVAXIfr0SaoLAp3Zr0roz9nE=">AAACI3icbVDLSgMxFM3UVx1foy7dBIvQVZnpQsVVwY3LCvYBTSmZ9LYNzWSGJCOUof/ixl9x40Ipblz4L6btCNp6IXA49xxO7gkTwbXx/U+nsLG5tb1T3HX39g8Oj7zjk6aOU8WgwWIRq3ZINQguoWG4EdBOFNAoFNAKx7fzfesRlOaxfDCTBLoRHUo+4IwaS/W8GxLCkMuMgTSgpq51cgsJcZcRhGBXQ0LVQu8SkP0fbc8r+RV/MXgdBDkooXzqPW9G+jFLI2tngmrdCfzEdDOqDGcCpi5J50lsTIfQsVDSCHQ3W9w4xReW6eNBrOyTBi/Y346MRlpPotAqI2pGenU3J//bdVIzuO5mXCapAcmWQYNUYBPjeWG4zxUwIyYWUKa4/StmI9sHsx1o15YQrJ68DprVSnBZqd5XS7VyXkcRnaFzVEYBukI1dIfqqIEYekIv6A29O8/OqzNzPpbSgpN7TtGfcb6+ASaCpR8=</latexit>

ambient
source

separation

<latexit sha1_base64="SdE1iMYbzzo9fpE9pQ5ERseTK0g=">AAACDHicbVDLSgMxFM34rOOr6tJNsAhdlZku1GXBjcsK9gHtUDKZO21oJhmSjFCGfoAbf8WNC0Xc+gHu/BvTdgRtPRA4nHMvN+eEKWfaeN6Xs7a+sbm1Xdpxd/f2Dw7LR8dtLTNFoUUll6obEg2cCWgZZjh0UwUkCTl0wvH1zO/cg9JMijszSSFIyFCwmFFirDQoV/ohDJnIKQgDauqCoDIC5fZBRD+infJq3hx4lfgFqaACzUH5sx9JmiV2nXKidc/3UhPkRBlGOUzdfqYhJXRMhtCzVJAEdJDPw0zxuVUiHEtlnzB4rv7eyEmi9SQJ7WRCzEgvezPxP6+XmfgqyJlIM2NTLg7FGcdG4lkzOGIKqOETSwhVzP4V0xFRhNoOtGtL8Jcjr5J2veZf1Oq39UqjWtRRQqfoDFWRjy5RA92gJmohih7QE3pBr86j8+y8Oe+L0TWn2DlBf+B8fAN4m5vO</latexit>en
co

d
er

<latexit sha1_base64="SdE1iMYbzzo9fpE9pQ5ERseTK0g=">AAACDHicbVDLSgMxFM34rOOr6tJNsAhdlZku1GXBjcsK9gHtUDKZO21oJhmSjFCGfoAbf8WNC0Xc+gHu/BvTdgRtPRA4nHMvN+eEKWfaeN6Xs7a+sbm1Xdpxd/f2Dw7LR8dtLTNFoUUll6obEg2cCWgZZjh0UwUkCTl0wvH1zO/cg9JMijszSSFIyFCwmFFirDQoV/ohDJnIKQgDauqCoDIC5fZBRD+infJq3hx4lfgFqaACzUH5sx9JmiV2nXKidc/3UhPkRBlGOUzdfqYhJXRMhtCzVJAEdJDPw0zxuVUiHEtlnzB4rv7eyEmi9SQJ7WRCzEgvezPxP6+XmfgqyJlIM2NTLg7FGcdG4lkzOGIKqOETSwhVzP4V0xFRhNoOtGtL8Jcjr5J2veZf1Oq39UqjWtRRQqfoDFWRjy5RA92gJmohih7QE3pBr86j8+y8Oe+L0TWn2DlBf+B8fAN4m5vO</latexit>

encoder

<latexit sha1_base64="SdE1iMYbzzo9fpE9pQ5ERseTK0g=">AAACDHicbVDLSgMxFM34rOOr6tJNsAhdlZku1GXBjcsK9gHtUDKZO21oJhmSjFCGfoAbf8WNC0Xc+gHu/BvTdgRtPRA4nHMvN+eEKWfaeN6Xs7a+sbm1Xdpxd/f2Dw7LR8dtLTNFoUUll6obEg2cCWgZZjh0UwUkCTl0wvH1zO/cg9JMijszSSFIyFCwmFFirDQoV/ohDJnIKQgDauqCoDIC5fZBRD+infJq3hx4lfgFqaACzUH5sx9JmiV2nXKidc/3UhPkRBlGOUzdfqYhJXRMhtCzVJAEdJDPw0zxuVUiHEtlnzB4rv7eyEmi9SQJ7WRCzEgvezPxP6+XmfgqyJlIM2NTLg7FGcdG4lkzOGIKqOETSwhVzP4V0xFRhNoOtGtL8Jcjr5J2veZf1Oq39UqjWtRRQqfoDFWRjy5RA92gJmohih7QE3pBr86j8+y8Oe+L0TWn2DlBf+B8fAN4m5vO</latexit>

encoder
<latexit sha1_base64="9K8EjuVb564e1GiJg9fewBDKeuw=">AAACDHicbVDLSgMxFM34rOOr6tJNsAhdlZku1GXBjcsK9gHtUDKZO21oJhmSjFCGfoAbf8WNC0Xc+gHu/BvTdgRtPRA4nHMuN/eEKWfaeN6Xs7a+sbm1Xdpxd/f2Dw7LR8dtLTNFoUUll6obEg2cCWgZZjh0UwUkCTl0wvH1zO/cg9JMijszSSFIyFCwmFFirDQoV/ohDJnIKQgDaupGQGUEyu2DiH5Em/Jq3hx4lfgFqaACzUH5sx9JmiV2nHKidc/3UhPkRBlGOUzdfqYhJXRMhtCzVJAEdJDPj5nic6tEOJbKPmHwXP09kZNE60kS2mRCzEgvezPxP6+XmfgqyJlIMwOCLhbFGcdG4lkzOGIKqOETSwhVzP4V0xFRhNoOtGtL8JdPXiXtes2/qNVv65VGtaijhE7RGaoiH12iBrpBTdRCFD2gJ/SCXp1H59l5c94X0TWnmDlBf+B8fANovpvE</latexit>

d
eco

d
er

<latexit sha1_base64="7nTsYd0XNM+FMedCdCgnFMFu9R8=">AAACGXicbVDLSsNAFJ34rPEVdekmWISuStKFuiy4cVnBPqAJZTK5SYdOJmFmIpTQ33Djr7hxoYhLXfk3TtoI2npg4HDOuTNzT5AxKpXjfBlr6xubW9u1HXN3b//g0Do67sk0FwS6JGWpGARYAqMcuooqBoNMAE4CBv1gcl36/XsQkqb8Tk0z8BMccxpRgpWWRpbjBRBTXhDgCsTMVJBkqcDM80zMaMwTrZse8PAnMbLqTtOZw14lbkXqqEJnZH14YUry8iLCsJRD18mUX2ChKGEwM71cQobJBMcw1JTjBKRfzDeb2edaCe0oFfpwZc/V3xMFTqScJoFOJliN5bJXiv95w1xFV35BeZYr4GTxUJQzW6V2WZMdUgFEsakmmAiq/2qTMRaY6A6kqUtwl1deJb1W071otm5b9XajqqOGTtEZaiAXXaI2ukEd1EUEPaAn9IJejUfj2Xgz3hfRNaOaOUF/YHx+A8qGoVU=</latexit>

temporal
alignment

<latexit sha1_base64="pD/evznJ6yVcH49kwpsXMq4quT8=">AAACFXicbVDLSsNAFJ3UV42vqEs3wSJ0ISXpQl0WdOGygn1AE8pkctMOnUzCzKRQQn/Cjb/ixoUibgV3/o3TNoK2Hhg4nHMPd+4JUkalcpwvo7S2vrG5Vd42d3b39g+sw6O2TDJBoEUSlohugCUwyqGlqGLQTQXgOGDQCUbXM78zBiFpwu/VJAU/xgNOI0qw0lLfOvcCGFCeE+AKxNQMKcMKQs8zScLH7o3pAQ9/3L5VcWrOHPYqcQtSQQWafevTCxOSxTpOGJay5zqp8nMsFCUMpqaXSUgxGeEB9DTlOAbp5/OrpvaZVkI7SoR+XNlz9Xcix7GUkzjQkzFWQ7nszcT/vF6mois/pzzNFHCyWBRlzFaJPavIDqkAothEE0wE1X+1yRALTHQH0tQluMsnr5J2veZe1Op39UqjWtRRRifoFFWRiy5RA92iJmohgh7QE3pBr8aj8Wy8Ge+L0ZJRZI7RHxgf36ognww=</latexit>

dilated
conv1D

<latexit sha1_base64="pD/evznJ6yVcH49kwpsXMq4quT8=">AAACFXicbVDLSsNAFJ3UV42vqEs3wSJ0ISXpQl0WdOGygn1AE8pkctMOnUzCzKRQQn/Cjb/ixoUibgV3/o3TNoK2Hhg4nHMPd+4JUkalcpwvo7S2vrG5Vd42d3b39g+sw6O2TDJBoEUSlohugCUwyqGlqGLQTQXgOGDQCUbXM78zBiFpwu/VJAU/xgNOI0qw0lLfOvcCGFCeE+AKxNQMKcMKQs8zScLH7o3pAQ9/3L5VcWrOHPYqcQtSQQWafevTCxOSxTpOGJay5zqp8nMsFCUMpqaXSUgxGeEB9DTlOAbp5/OrpvaZVkI7SoR+XNlz9Xcix7GUkzjQkzFWQ7nszcT/vF6mois/pzzNFHCyWBRlzFaJPavIDqkAothEE0wE1X+1yRALTHQH0tQluMsnr5J2veZe1Op39UqjWtRRRifoFFWRiy5RA92iJmohgh7QE3pBr8aj8Wy8Ge+L0ZJRZI7RHxgf36ognww=</latexit>

dilated
conv1D

<latexit sha1_base64="hKEecPvLsfTEpWdHIYrSPwOWz+A=">AAACC3icbVDLSsNAFJ3UV42vqEs3oUXoqiRdqMuCLlxWsA9oQplMbtqhk0mYmRRK6N6Nv+LGhSJu/QF3/o3TNoK2Hhg4nHMPd+4JUkalcpwvo7SxubW9U9419/YPDo+s45OOTDJBoE0SlohegCUwyqGtqGLQSwXgOGDQDcbXc787ASFpwu/VNAU/xkNOI0qw0tLAqngBDCnPCXAFYmaShE/cG9MDHv5oA6vq1J0F7HXiFqSKCrQG1qcXJiSLdZwwLGXfdVLl51goShjMTC+TkGIyxkPoa8pxDNLPF7fM7HOthHaUCP24shfq70SOYymncaAnY6xGctWbi/95/UxFV35OeZop4GS5KMqYrRJ7XowdUgFEsakmmAiq/2qTERaY6A6kqUtwV09eJ51G3b2oN+4a1WatqKOMzlAF1ZCLLlET3aIWaiOCHtATekGvxqPxbLwZ78vRklFkTtEfGB/fL2abDw==</latexit>

conv1D

<latexit sha1_base64="hKEecPvLsfTEpWdHIYrSPwOWz+A=">AAACC3icbVDLSsNAFJ3UV42vqEs3oUXoqiRdqMuCLlxWsA9oQplMbtqhk0mYmRRK6N6Nv+LGhSJu/QF3/o3TNoK2Hhg4nHMPd+4JUkalcpwvo7SxubW9U9419/YPDo+s45OOTDJBoE0SlohegCUwyqGtqGLQSwXgOGDQDcbXc787ASFpwu/VNAU/xkNOI0qw0tLAqngBDCnPCXAFYmaShE/cG9MDHv5oA6vq1J0F7HXiFqSKCrQG1qcXJiSLdZwwLGXfdVLl51goShjMTC+TkGIyxkPoa8pxDNLPF7fM7HOthHaUCP24shfq70SOYymncaAnY6xGctWbi/95/UxFV35OeZop4GS5KMqYrRJ7XowdUgFEsakmmAiq/2qTERaY6A6kqUtwV09eJ51G3b2oN+4a1WatqKOMzlAF1ZCLLlET3aIWaiOCHtATekGvxqPxbLwZ78vRklFkTtEfGB/fL2abDw==</latexit>

conv1D

<latexit sha1_base64="hKEecPvLsfTEpWdHIYrSPwOWz+A=">AAACC3icbVDLSsNAFJ3UV42vqEs3oUXoqiRdqMuCLlxWsA9oQplMbtqhk0mYmRRK6N6Nv+LGhSJu/QF3/o3TNoK2Hhg4nHMPd+4JUkalcpwvo7SxubW9U9419/YPDo+s45OOTDJBoE0SlohegCUwyqGtqGLQSwXgOGDQDcbXc787ASFpwu/VNAU/xkNOI0qw0tLAqngBDCnPCXAFYmaShE/cG9MDHv5oA6vq1J0F7HXiFqSKCrQG1qcXJiSLdZwwLGXfdVLl51goShjMTC+TkGIyxkPoa8pxDNLPF7fM7HOthHaUCP24shfq70SOYymncaAnY6xGctWbi/95/UxFV35OeZop4GS5KMqYrRJ7XowdUgFEsakmmAiq/2qTERaY6A6kqUtwV09eJ51G3b2oN+4a1WatqKOMzlAF1ZCLLlET3aIWaiOCHtATekGvxqPxbLwZ78vRklFkTtEfGB/fL2abDw==</latexit>co
n
v
1D

<latexit sha1_base64="hKEecPvLsfTEpWdHIYrSPwOWz+A=">AAACC3icbVDLSsNAFJ3UV42vqEs3oUXoqiRdqMuCLlxWsA9oQplMbtqhk0mYmRRK6N6Nv+LGhSJu/QF3/o3TNoK2Hhg4nHMPd+4JUkalcpwvo7SxubW9U9419/YPDo+s45OOTDJBoE0SlohegCUwyqGtqGLQSwXgOGDQDcbXc787ASFpwu/VNAU/xkNOI0qw0tLAqngBDCnPCXAFYmaShE/cG9MDHv5oA6vq1J0F7HXiFqSKCrQG1qcXJiSLdZwwLGXfdVLl51goShjMTC+TkGIyxkPoa8pxDNLPF7fM7HOthHaUCP24shfq70SOYymncaAnY6xGctWbi/95/UxFV35OeZop4GS5KMqYrRJ7XowdUgFEsakmmAiq/2qTERaY6A6kqUtwV09eJ51G3b2oN+4a1WatqKOMzlAF1ZCLLlET3aIWaiOCHtATekGvxqPxbLwZ78vRklFkTtEfGB/fL2abDw==</latexit>con
v
1D

<latexit sha1_base64="6NEt3c1DCGGEW8w6MlItZZjclPs=">AAACDXicbVC7TsMwFHV4lvAKMLJEtEidqqQDMFZiYSwSfUhNVDnOTWvVcSLbQaqi/AALv8LCAEKs7Gz8DW4bJGg5kqXjc+6RfU+QMiqV43wZa+sbm1vblR1zd2//4NA6Ou7KJBMEOiRhiegHWAKjHDqKKgb9VACOAwa9YHI983v3ICRN+J2apuDHeMRpRAlWWhpaNS+AEeU5Aa5AFGbNk/pW1EwPePijDq2q03DmsFeJW5IqKtEeWp9emJAs1nHCsJQD10mVn2OhKGFQmF4mIcVkgkcw0JTjGKSfz7cp7HOthHaUCH24sufq70SOYymncaAnY6zGctmbif95g0xFV35OeZop4GTxUJQxWyX2rBo7pAKIYlNNMBFU/9UmYyww0R1IU5fgLq+8SrrNhnvRaN42q616WUcFnaIzVEcuukQtdIPaqIMIekBP6AW9Go/Gs/FmvC9G14wyc4L+wPj4Bq5mm94=</latexit>

sin

<latexit sha1_base64="ZQikQkBrACqb6ZHsiC5ZSmW0bSU=">AAACDnicbVDLSsNAFJ3UV42vqEs3wbbQVUm6UJcFNy4r2Ac0oUwmt+3QySTMTIQS8gVu/BU3LhRx69qdf+O0jaCtBwYO59zDnXuChFGpHOfLKG1sbm3vlHfNvf2DwyPr+KQr41QQ6JCYxaIfYAmMcugoqhj0EwE4Chj0gun13O/dg5A05ndqloAf4TGnI0qw0tLQqnkBjCnPCHAFIjernsJ8kuVV0wMe/shDq+I0nAXsdeIWpIIKtIfWpxfGJI10nDAs5cB1EuVnWChKGOSml0pIMJniMQw05TgC6WeLc3K7ppXQHsVCP67shfo7keFIylkU6MkIq4lc9ebif94gVaMrP6M8SRVwslw0SpmtYnvejR1SAUSxmSaYCKr/apMJFpjoDqSpS3BXT14n3WbDvWg0b5uVVr2oo4zO0DmqIxddoha6QW3UQQQ9oCf0gl6NR+PZeDPel6Mlo8icoj8wPr4BdHOcSQ==</latexit>

tanh

<latexit sha1_base64="Tga8KFJxQLA4We9GdKXUhSp4Xrg=">AAACD3icbVDLSsNAFJ3UV42vqks3g63SVUm6UJcFNy4r2Ac0pUwmN+3QySTMTIQS8gdu/BU3LhRx69adf+P0IWjrgYHDOfdw5x4/4Uxpx/myCmvrG5tbxW17Z3dv/6B0eNRWcSoptGjMY9n1iQLOBLQ00xy6iQQS+Rw6/vh66nfuQSoWizs9SaAfkaFgIaNEG2lQOvd8GDKRURAaZG5XPMWGEcnyiu2BCH70Qans1JwZ8CpxF6SMFmgOSp9eENM0MnHKiVI910l0PyNSM8oht71UQULomAyhZ6ggEah+Nrsnx2dGCXAYS/OExjP1dyIjkVKTyDeTEdEjtexNxf+8XqrDq37GRJJqEHS+KEw51jGeloMDJoFqPjGEUMnMXzEdEUmo6UDZpgR3+eRV0q7X3Ita/bZeblQXdRTRCTpFVeSiS9RAN6iJWoiiB/SEXtCr9Wg9W2/W+3y0YC0yx+gPrI9vQt+cuQ==</latexit>�

<latexit sha1_base64="oHHJ8SUbj17cqHTTpdWI0BNF2UY=">AAACCXicbVDLSsNAFJ34rPEVdelmsAhdlaQLdVlw47KCfUATymRy0w6dTMLMRCihWzf+ihsXirj1D9z5N07bCNp6YOBwzj3cuSfMOFPadb+stfWNza3tyo69u7d/cOgcHXdUmksKbZryVPZCooAzAW3NNIdeJoEkIYduOL6e+d17kIql4k5PMggSMhQsZpRoIw0c7IcwZKKgIDTIqc1TpWwfRPSjDJyqW3fnwKvEK0kVlWgNnE8/SmmemDjlRKm+52Y6KIjUjHKY2n6uICN0TIbQN1SQBFRQzC+Z4nOjRDhOpXlC47n6O1GQRKlJEprJhOiRWvZm4n9eP9fxVVAwkeUaBF0sinOOdYpnteCISaCaTwwhVDLzV0xHRBJqOlC2KcFbPnmVdBp176LeuG1Um7Wyjgo6RWeohjx0iZroBrVQG1H0gJ7QC3q1Hq1n6816X4yuWWXmBP2B9fENL4SakQ==</latexit>

loss

<latexit sha1_base64="rVGWyDmLrPr+5h/dczSSJIljmJ8=">AAACCnicbVDLSsNAFJ3UV42vqEs30VboqiRdqMuKG1dSwT6gKWUyuWmHTiZhZiKU0LUbf8WNC0Xc+gXu/BunbQRtPTBwOOce7tzjJ4xK5ThfRmFldW19o7hpbm3v7O5Z+wctGaeCQJPELBYdH0tglENTUcWgkwjAkc+g7Y+upn77HoSkMb9T4wR6ER5wGlKClZb61rHnw4DyjABXICZm+bJ/UzY94MGP1LdKTtWZwV4mbk5KKEejb316QUzSSMcJw1J2XSdRvQwLRQmDiemlEhJMRngAXU05jkD2stkpE/tUK4EdxkI/ruyZ+juR4UjKceTryQiroVz0puJ/XjdV4UUvozxJFXAyXxSmzFaxPe3FDqgAothYE0wE1X+1yRALTHQH0tQluIsnL5NWreqeVWu3tVK9ktdRREfoBFWQi85RHV2jBmoigh7QE3pBr8aj8Wy8Ge/z0YKRZw7RHxgf34CpmhA=</latexit>

AN

<latexit sha1_base64="wRrCu739iBVsMJarGlC+apQaqhA=">AAACCXicbVDLSsNAFJ3UV42vqks3g0XoqiRdqMuCIC4r9gVNKZPJTTt0MgkzE6GEbt34K25cKOLWP3Dn3zhtI2jrgYHDOfdw5x4/4Uxpx/myCmvrG5tbxW17Z3dv/6B0eNRWcSoptGjMY9n1iQLOBLQ00xy6iQQS+Rw6/vhq5nfuQSoWi6aeJNCPyFCwkFGijTQoYc+HIRMZBaFBTu275nXT9kAEP8qgVHaqzhx4lbg5KaMcjUHp0wtimkYmTjlRquc6ie5nRGpGOUxtL1WQEDomQ+gZKkgEqp/NL5niM6MEOIyleULjufo7kZFIqUnkm8mI6JFa9mbif14v1eFlP2MiSTUIulgUphzrGM9qwQGTQDWfGEKoZOavmI6IJNR0oGxTgrt88ipp16ruebV2WyvXK3kdRXSCTlEFuegC1dENaqAWougBPaEX9Go9Ws/Wm/W+GC1YeeYY/YH18Q1mR5oR</latexit>

STFT<latexit sha1_base64="JH+RPPbGUJ/mb/y//qfB3/MkPf4=">AAACC3icbVDLSsNAFJ3UV42vqEs3oUXoqiRdqMuCG5cV7AOaUCaTm3boZBJmJkIJ3bvxV9y4UMStP+DOv3HSRtDWAwOHc87lzj1ByqhUjvNlVDY2t7Z3qrvm3v7B4ZF1fNKTSSYIdEnCEjEIsARGOXQVVQwGqQAcBwz6wfS68Pv3ICRN+J2apeDHeMxpRAlWWhpZNS+AMeU5Aa5AzM0oK6KmBzz80UZW3Wk6C9jrxC1JHZXojKxPL0xIFutxwrCUQ9dJlZ9joShhMDe9TEKKyRSPYagpxzFIP1/cMrfPtRLaUSL048peqL8nchxLOYsDnYyxmshVrxD/84aZiq78nPI0U8DJclGUMVsldlGMHVIBRLGZJpgIqv9qkwkWmOgOpKlLcFdPXie9VtO9aLZuW/V2o6yjis5QDTWQiy5RG92gDuoigh7QE3pBr8aj8Wy8Ge/LaMUoZ07RHxgf39Q5m3g=</latexit>

fusion

<latexit sha1_base64="6lXNLMjRLEKZ5zvAroB2lo8Rmpg=">AAACEHicbVDLSsNAFJ3UV42vqEs3g63YVUm6UJcFNy4r2Ac0oUwmt+3QySTMTIQS+glu/BU3LhRx69Kdf+P0IWjrgYHDOfdw554w5Uxp1/2yCmvrG5tbxW17Z3dv/8A5PGqpJJMUmjThieyERAFnApqaaQ6dVAKJQw7tcHQ99dv3IBVLxJ0epxDEZCBYn1GijdRzzv0QBkzkFIQGObHLnq9ZDAp7ZdsHEf0YPafkVt0Z8CrxFqSEFmj0nE8/SmgWmzjlRKmu56Y6yInUjHKY2H6mICV0RAbQNVQQszTIZwdN8JlRItxPpHlC45n6O5GTWKlxHJrJmOihWvam4n9eN9P9qyBnIs00CDpf1M841gmetoMjJoFqPjaEUMnMXzEdEkmo6UDZpgRv+eRV0qpVvYtq7bZWqlcWdRTRCTpFFeShS1RHN6iBmoiiB/SEXtCr9Wg9W2/W+3y0YC0yx+gPrI9v0OKcXg==</latexit>
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viewpoint

Figure 8.3: Visually Guided Acoustic Synthesis (ViGAS). Given the input
audio AS, we first separate out the ambient sound to focus on the sound of interest.
We take the source audio and source visual to localize the active speaker on the 2D
image. We also extract the visual acoustic features of the environment by running
an encoder on the source visual. We concatenate the active speaker feature, source
visual features, and the target pose, and fuse these features with a MLP. We feed
both the audio stream AC and fused visual feature VC into the acoustic synthesis
network, which has M stacked audio-visual fusion blocks. In each block, the audio
sequence is processed by dilated conv1d layers and the visual features are processed
by conv1d layers. Lastly, the previously separated ambient sound is added back to
the waveform. During training, our temporal alignment module shifts the prediction
by the amount of delay estimated between the source and the target audio to align
the prediction well with the target.

8.3.1 Ambient Sound Separation

ViGAS starts by decomposing the input sound into primary and ambient (traf-

fic, electric noise from a fridge or the A/C, etc.). Ambient sound is important for

realism, but it also interferes with learning the model because it can carry significant

energy, making the model focus on it rather than on the primary sounds, and its

spatial distribution is very different from the primary sounds.

By explicitly separating primary and ambient sounds, ViGAS: (1) accounts for

the fact that the transfer functions of primary and ambient sounds are very different

and thus difficult to model together; (2) avoids wasting representational power on

modelling ambient sounds that might be difficult to reconstruct accurately and depend

less on the viewpoint; and (3) prevents ambient sounds, which are noise-like and
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high-energy, from dominating learning and reconstruction. In practice, as we show in

Sec. 8.4, without the ambient sound separation, the model performs poorly.

The goal of ambient sound separation is thus to construct a function (AC , AN) =

P(AS) that separates the input sound AS into primary sound AC and ambient sound

AN . Existing approaches to this problem are based on signal processing [69, 20] or

learning [63, 77]. We find that pretrained speech enhancement models such as De-

noiser [63] tend to aggressively remove the noise including the primary sound, which

hinders re-synthesis. We thus opt for band-pass filtering, passing frequencies within

a certain range and rejecting/attenuating frequencies outside of it, which we found

to work well. We cut frequencies below 80 Hz for SoundSpaces-NVAS and 150 Hz for

Replay-NVAS.

8.3.2 Active Speaker Localization

Knowing where the emitters of different primary sounds are located in the

environment can help to solve the NVAS task. In this chapter, we focus on localizing

the active speaker, although there can be other important primary sound events

like instruments playing, speakers interacting with objects, etc. The goal of active

speaker localization is to predict the bounding box of the active speaker in each

frame of the video (examples in Fig. 8.4). The bounding box is in the format of

(ymin, ymax, xmin, xmax) and x, y are normalized to [0, 1] by the image width and height,

respectively.

On SoundSpaces-NVAS, this task is relatively easy because of the strong cor-

respondence between the appearance of the speaker and the gender of the speech

sample, which enables to easily train a classifier for active speakers. However, this

is much harder on Replay-NVAS because cameras record speakers from a distance

and from diverse angles, meaning that lip motion, the main cue used by speaker

localization methods [132, 276, 241], is often not visible. Hence, the model has to

rely on other cues to identify the speaker (such as body motion, gender or identity).

181



Furthermore, sometimes people speak or laugh over each other.

Since our focus is not speaker localization, for the Replay-NVAS we assume

that this problem is solved by an external module that does audio-visual active

speaker localization. To approximate the output of such a module automatically,

we rely on the near-range audio recordings. Specifically, we first run an off-the-shelf

detection and tracker [56] on the video at 5 FPS and obtain, with some manual

refinement, bounding boxes Bi
t for i = 1, . . . , N at each frame t. We manually as-

sign the near-range microphone audio Ai
N to each tracked person. We select the

active speaker D based on the maximum energy of each near-range microphone, i.e.,

D = argmaxi

{∑
Ai

N [t : t + ∆t]2
}
, where ∆t is the time interval we use to calculate

the audio energy. We output bounding box BD as the localization feature VL.

8.3.3 Visual Acoustic Network and Fusion

The active speaker bounding box BD only disambiguates the active speaker

from all visible humans on 2D, which is not enough to indicate where the speaker is

in 3D. To infer that, the visual information is also needed. Since there is usually not

much movement in one second (the length of the input video clip), the video clip does

not provide much extra information compared to a single frame. Thus, we choose the

middle frame to represent the clip and extract the visual acoustic features VE from

the input RGB image with a pretrained ResNet18 [115] before the average pooling

layer to preserve spatial information. To reduce the feature size, we feed VE into a 1D

convolution with kernel size 1 and output channel size 8. We then flatten the visual

features to obtain feature VF .

The target pose is specified as the translation along x, y, z axes plus difference

between orientations of the source “view” and the target “view” expressed via rotation

angles: +y (roll), +x (pitch) and +z (yaw). We encode each angle α as its sinusoidal

value: (sin(α), cos(α)).

Similarly, the target pose is not enough by itself to indicate where the target

182



viewpoint T is in the 3D space; to infer that, the source view VS is again needed. For

example, in top row of Fig 8.4, for target viewpoint 3, “two meters to the right and

one meter forward” is not enough to indicate the target location is in the corridor,

while the model can reason that based on the source view.

We use a fusion network to predict a latent representation of the scene vari-

ables S, T, LD, E (cf. Sec. 8.1) by first concatenating [VL, PT , VF ] and then feeding it

through a multilayer perceptron (MLP). See Fig. 8.3 for the network.

8.3.4 Acoustic Synthesis

With the separated primary sound AC and the visual acoustic feature VC as

input, the goal of the acoustic synthesis module is to transform AC guided by VC .

We design the acoustic synthesis network to learn a non-linear transfer function (im-

plicitly) that captures these major acoustic phenomena, including the attenuation

of sound in space, the directivity of sound sources (human speech is directional),

the reverberation level, the head-related transfer function, as well as the frequency-

dependent acoustic phenomena. Training end-to-end makes it possible to capture

these subtle and complicated changes in the audio.

Inspired by recent advances in time-domain signal modeling [209, 235], we de-

sign the network as M stacked synthesis blocks, where each block consists of multiple

conv1D layers. We first encode the input audio AC into a latent space, which is then

fed into the synthesis block. The key of the synthesis block is a gated multimodal

fusion network that injects the visual information into the audio as follows:

z=tanh(pkA(Ak
F )+pkV (VC))⊙σ(qkA(Ak

F )+qkV (VC)), (8.2)

where ⊙ indicates element-wise multiplication, σ is a logistic sigmoid function, k =

1, . . . ,M is the layer index and p, q are both learnable 1D convolutions.

After passing z through a sinusoidal activation function, the network uses two

separate conv1D layers to process the feature, one producing the residual connection
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Ak+1
F and one producing the skip connection Ak+1

P . All skip connections Ak+1
P are

mean pooled and fed into a decoder to produce the output AO. We add back the

separated ambient sound AN as the target audio estimate: ÂT = AO + AN .

8.3.5 Temporal Alignment

In order for the model to learn well, it is important that input and output

sounds are temporally aligned. While the Replay-NVAS data is already synchronised

based on the clapper sound, due to the finite speed of sound, the sounds emitted from

different locations may still arrive at microphones with a delay slightly different from

the one of the clapper, causing misalignments that affect training.

To align source and target audio for training, we find the delay τ that maxi-

mizes the generalized cross-correlation:

RAS ,AT
(τ) = Et[hS(t) · hT (t− τ)], (8.3)

where hS and hT are the feature embedding for AS and AT respectively at time t.

We use the feature extractor h from the generalized cross-correlation phase transform

(GCC-PHAT) algorithm [146], which whitens the audio by dividing by the magnitude

of the cross-power spectral density. After computing τ , we shift the prediction AO by

τ samples to align with the AT and obtain AL. Note that alignment is already exact

for SoundSpaces-NVAS.

8.3.6 Loss

To compute the loss, we first encode the audio with the short-time Fourier

transform (STFT), a complex-valued matrix representation of the audio where the y

axis represents frequency and the x axis is time. We then compute the magnitude

of the STFT, and optimize the L1 loss between the the predicted and ground truth

magnitudes as follows:

L =
∣∣||STFT(AL)||2 − ||STFT(A′

T )||2
∣∣, (8.4)
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SoundSpaces-NVAS Replay-NVAS
Single Environment Novel Environment Single Environment
Mag LRE RTE Mag LRE RTE Mag LRE RTE

Input audio 0.225 1.473 0.032 0.216 1.408 0.039 0.159 1.477 0.046
TF Estimator [301] 0.359 2.596 0.059 0.440 3.261 0.092 0.327 2.861 0.147

DSP [50] 0.302 3.644 0.044 0.300 3.689 0.047 0.463 1.300 0.067
VAM [39] 0.220 1.198 0.041 0.235 1.131 0.051 0.161 0.924 0.070

ViGAS w/o visual 0.173 0.973 0.031 0.181 1.007 0.036 0.146 0.877 0.046
ViGAS 0.159 0.782 0.029 0.175 0.971 0.034 0.142 0.716 0.048

Table 8.1: Results on SoundSpaces-NVAS and Replay-NVAS. We report the
magnitude spectrogram distance (Mag), left-right energy ratio error (LRE), and RT60
error (RTE). Replay-NVAS does not have novel environment setup due to data being
collected in a single environment. For all metrics, lower is better. In addition to
baselines, we also evaluate ViGAS w/o visual by removing the active speaker local-
ization and visual features. Note that reverberation time is mostly invariant of the
receiver location in the same room and thus input audio has low RTE. A good model
should preserve this property while synthesizing the desired acoustics for the target
viewpoint.

where A′
T is the primary sound separated from AT with P(·). By taking the magni-

tude, we do not model the exact phase values, which we find hinders learning if being

included in the loss.

8.4 Experiments

We compare with several traditional and learning-based baselines and show

that ViGAS outperforms them in both a quantitative evaluation and a human subject

study.

Evaluation. We measure performance from three aspects: 1. closeness to GT as

measured by the magnitude spectrogram distance (Mag). 2. correctness of the

spatial sound as measured by the left-right energy ratio error (LRE), i.e., the

difference of ratio of energy between left and right channels and 3. correctness of
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the acoustic properties measured by RT60 error (RTE) [257, 39], i.e., the error

in reverberation time decaying by 60dB (RT60). We use a pretrained model [39] to

estimate RT60 directly from speech.

Baselines. We consider the following baselines: 1. Input audio. Copying the

input to the output. 2. TF Estimator [301] + Nearest Neighbor, i.e. storing

the transfer function estimated during training and retrieving the nearest neighbor

during test time. We estimate transfer functions with a Wiener filter [301] and index

them with the ground-truth locations of the speaker, source viewpoint, and target

viewpoint for the single environment setup and their relative pose for the novel envi-

ronment setup. At test time, this method searches the database to find the nearest

transfer function and applies it on the input audio. 3. Digital Signal Processing

(DSP) [50] approach that takes the distance, azimuth, and elevation of the sound

source, applies an inverse a head-related transfer function (HRTF) to estimate the

speech spoken by the speaker and then applies another HRTF to estimate the au-

dio at the target microphone location. This baseline adjusts the loudness of the left

and right channels based on where the speaker is in the target view. We supply GT

coordinates for SoundSpaces-NVAS and speakers’ head positions estimated with tri-

angulation on Replay-NVAS. 4. Visual Acoustic Matching (VAM) [39], recently

proposed for a related task of matching acoustics of input audio with a target image.

This task only deals with single viewpoint and single-channel audio. We adapt their

model with minimal modification by feeding in the image from the source viewpoint

and concatenating the position offset of the target microphone at the multimodal

fusion step.

8.4.1 Results on SoundSpaces-NVAS

Table 8.1 shows the results. For synthetic data, we consider two evaluation

setups: 1. single environment: train and test on the same environment and 2.
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novel environment: train and test on multiple non-overlapping Gibson environments

(90/10/20 for train/val/test).

In the single environment setup, our model largely outperforms all baselines as

well as our audio-only ablation on all metrics. TF Estimator performs poorly despite

being indexed by the ground truth location values because estimating a transfer

function directly from two audio clips is non-trivial and noisy for low-energy parts of

the signal. DSP also performs badly despite having the ground truth 3D coordinates

of the sound source. This is because head related transfer functions are typically

recorded in anechoic chambers, which does not account for acoustics of different

environments, e.g., reverberation. Both traditional approaches perform worse than

simply copying the input audio, indicating that learning-based models are needed for

this challenging task. The recent model VAM [39] performs much better compared to

the traditional approaches but still underperforms our model. There is a significant

difference between ViGAS w/o visual and the full model; this shows that the visual

knowledge about the speaker location and the environment is important for this task.

Fig. 8.4 shows an example where given the same input source viewpoint, our

model synthesizes audio for three different target viewpoints. The model reasons

about how the geometry and speaker locations changes based on the source view and

the target pose, and predicts the acoustic difference accordingly.

For the novel environment setup, our model again outperforms all baselines.

Compared to ViGAS in the single environment setup, both the magnitude spectro-

gram distance and the left-right energy ratio error increase. This is expected because

for novel (unseen) environments, single images capture limited geometry and acoustic

information. The model fails sometime when there is a drastic viewpoint change, e.g.,

target viewpoint 3 in Fig. 8.4. This setup requires the model to reason or “imagine”

the environment based on single audio-visual observation, which poses great challenge

for NVAS as well as NVS, where typically synthesis is performed in a fully observed

environment.
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Figure 8.4: Qualitative examples. For all binaural audio, we show the left-channel
and the right-channel waveforms side-by-side. Row 1: SoundSpaces-NVAS example
where given the source viewpoint and input audio, the model synthesizes audio for
three different target viewpoints (target views are for reference only). In this case,
the active speaker is the male speaker as indicated by the bounding box. For target
viewpoint 1, the view rotates about 90 degrees and the male speaker is on the left
side and the predicted left channel is louder than the right channel. Viewpoint 2
moves away from the speaker and thus yields lower amplitude compared to the first
prediction. For target viewpoint 3, it is completely located outside of the living room,
in which case, the sound could only come from the door open on the right (louder
right channel) and the reverberation also greatly increases due to the vanishing direct
sound. Row 2: Replay-NVAS example where the speaker is located on the left in
the source viewpoint which becomes the right and further from the camera in target
viewpoint 2, the model also predicts lower amplitude and louder right channel. On
the right side, we show an example of the audio-visual speech enhancement for the
active speaker. The model enhances the speech to largely match with the near-range
audio (target).

Ablations. Table 8.2 shows ablations on the model design. To understand if the

model uses visual information, we ablate the visual features VF and the active speaker

feature VL. Removing the active speaker feature leads to less damage on the model

performance, because without the explicitly localized active speaker, the model can

still implicitly reason about the active speaker location based on the image and audio.

If both are removed (“ViGAS w/o visual” in Table 8.1), the performance suffers most.

To study the effectiveness of the temporal alignment and ambient sound sep-

aration modules, we ablate them separately. Removing the temporal alignment leads

188



SS-NVAS Replay-NVAS
ViGAS Mag LRE Mag LRE

full model 0.159 0.782 0.142 0.716
w/o visual features 0.171 0.897 0.146 0.920

w/o ASL 0.161 0.814 0.143 0.757
w/o alignment 0.176 0.771 0.144 0.706
w/o separation 0.165 0.840 0.182 0.859

Table 8.2: Ablations of the model on both datasets.

to higher Mag error and slightly lower LRE. As for ambient sound separation, the

results show that optimizing for the high-energy noise-like ambient sound degrades

the performance.

8.4.2 Results on Replay-NVAS

Table 7.1 (right) shows the Replay-NVAS results. Compared to SoundSpaces-

NVAS, the magnitudes of all errors are smaller because there are less drastic acoustic

changes between viewpoints (8 DLSR cameras form a circle around the participants).

Traditional approaches like TF Estimator and DSP still perform poorly despite us-

ing the 3D coordinates of the camera and the speaker (triangulated from multiple

cameras). VAM performs better due to end-to-end learning; however, our model

outperforms it. Compared to ViGAS w/o visual, the full model has much lower left-

right energy ratio error and slightly higher reverberation time error, showing that the

model takes into account the speaker position and viewpoint change for synthesizing

the audio.

Fig. 8.4 (row 2, left) shows a qualitative example. In the source viewpoint,

the active speaker is on the left, while in the target viewpoint, he is further from the

camera and on the right. The model synthesizes an audio waveform that captures

the corresponding acoustic change, showing that our model successfully learns from

real videos.
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Mag RTE

Input 0.279 0.376
ViGAS (ours) 0.234 0.122

Table 8.3: Speech enhancement on Replay-NVAS.

Dataset Input DSP ViGAS

SoundSpaces-NVAS 24% 2% 74%
Replay-NVAS 43% 6% 51%

Table 8.4: Human Study. Participants favor our approach over the two most
realistic sounding baselines, (1) copying the input signal, and (2) a digital signal
processing baseline.

Audio-visual speech enhancement. In some real-world applications, e.g., hear-

ing aid devices, the goal is to obtain the enhanced clean speech of the active speaker.

This can be seen as a special case of NVAS, where the target viewpoint is the ac-

tive speaker. Our model is capable of performing audio-visual speech enhancement

without any modification. We simply set the target audio to the near-range audio

recording for the active speaker. We show the results in Table 8.3. Our model obtains

cleaner audio compared to the input audio (example in Fig. 8.4, row 2, right).

Human subject study. To supplement the quantitative metrics and evaluate how

well our synthesized audio captures the acoustic change between viewpoints, we con-

duct a human subject study. We show participants the image of the target viewpoint

VT as well as the audio AT as reference. We provide three audio samples: the input,

the prediction of ViGAS, and the prediction of DSP (the most naturally sounding

baseline) and ask them to select a clip that sounds closest to the target audio. We

select 20 examples from SoundSpaces-NVAS and 20 examples from Replay-NVAS and

invite 10 participants to perform the study.

See Table 8.4 for the results. On the synthetic dataset SoundSpaces-NVAS,

our approach is preferred over the baselines by a large margin. This margin is lower
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on the real-world Replay-NVAS dataset but is still significant.

8.5 Conclusion

We introduce the challenging novel-view acoustic synthesis task and a related

benchmark in the form of both real and synthetic datasets. We propose a neural

rendering model that learns to transform the sound from the source viewpoint to

the target viewpoint by reasoning about the observed audio and visual stream. Our

model surpasses all baselines on both datasets. We believe this research unlocks many

potential applications and research in multimodal novel-view synthesis.

While this is very exciting, we acknowledge that we are feeding the ground

truth active-speaker localization bounding boxes into the model, which has simplified

the task. In the future, we plan to incorporate active-speaker localization models

and let the model jointly learn to localize and synthesize. In addition to this, the

proposed model heavily relies on the training data to learn to synthesize sounds for

novel viewpoints, which might be the reason why the model does not generalize to

novel environments very well. Incorporating prior knowledge of human head models

could improve the data efficiency as well as generalization.
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Chapter 9: SoundingActions: Learning How

Actions Sound from Narrated Egocentric Videos

In previous chapters, I covered simulation platforms that support audio-visual

rendering in Chapter 3, learning navigation policies in Chapter 4 and Chapter 5 as

well as learning acoustic properties of 3D environment in Chapter 6, Chapter 7 and

Chapter 8. The key to all these problems is understanding how sound propagates

in space as a function of the environment. Before sound waves propagate, they are

produced from object vibrations due to certain external forces such as human actions.

To understand the association between human actions and the sounds they make, I

propose to learn action sounds from egocentric videos, which provide rich information

about how human actions produce sounds. More specifically, I aim to answer two

questions to approach the problem: 1. What actions sound? and 2. How to generate

action sounds? I will investigate the first problem in this chapter and the second

problem in the next chapter. This work was accepted at CVPR 2024.

Human activity often produces sounds. Closing a door, chopping vegetables,

typing on a keyboard, talking with a friend—our interactions with the objects and

people around us generate audio that reveals our physical behaviors. These sounds

can be strongly associated with the subjects of our activity and how we perform it.

For example, opening a water bottle sounds different than opening a cabinet; chop-

ping sweet potatoes sounds different than chopping onions; chopping onions sounds

different than mincing onions (the same object). Understanding the link between

sounds and actions is valuable for a number of applications, such as multimodal ac-

tivity recognition, crossmodal retrieval, content generation, or forecasting the physical

effects of a person’s actions.

How should AI learn about sounding actions? Existing work typically curates

annotated datasets for supervised learning [93, 121, 46, 220], taking care to select

192



Action: C digs the 
soil with a hoe.

Action: C moves a 
metal cutting machine 
with hands.

Does the action sound?

Does the action sound?

Figure 9.1: We aim to distinguish sounds that are directly caused by human ac-
tions (bottom) from those that are not (top). Given egocentric training videos with
language descriptions of the camera wearer’s (“C”) current action, we learn an em-
bedding where the audio and visual features of any given clip are best aligned only
when both are also consistent with the language. This allows discerning clips where
the audio and vision may be correlated (e.g., the cutting machine running making
loud noise in top row) versus those where the sounds are driven by human action
(digging in bottom row)—importantly, without language at inference time.

events or actions that have associated sounds (e.g., lawnmowing, chopping), while

others deliberately collect videos of object collisions (e.g., striking objects with a

drumstick [212] or crashing into them with a robot [85, 53]), or develop physics-based

simulations [84]. On the one hand, these approaches are appealing for their ability to

focus on meaningful audio-visual correspondences. On the other hand, their curated

nature risks limiting the scope of sounding actions that can be learned.

Instead, we aim to learn how human actions sound from narrated in-the-wild

egocentric videos. See Figure 9.1. Given a pool of videos of everyday human activ-

ity, the goal is to learn a crossmodal representation where sounding actions cluster

together based on how they look and sound. By sampling the videos freely, we can

broaden the scope to discover the breadth of sounding actions without having to
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Video Audio

Language

III

I

II

IV
C operates the laptop with his hands

C picks up a bucket from the flat plank C talks to person T

C puts mortar on the wall with a trowel

1 2

3 4

1
Before

After

RefineAlign

2

Figure 9.2: Main idea. On the left, the Venn diagram illustrates different ways audio (A),
video (V ) and language (L) modalities can overlap in the content they capture. C refers
to the camera wearer. Regions II,III,IV are information that is only shared between two
modalities but not the third, e.g., the racing game in 1○ where the game sounds correlate
with the vision, yet are not about the camera wearer’s described action (using hands on
laptop), the lifting action in 3○, where the visuals and language agree but the action is
inaudible, and the off-screen talking action in 4○, where talking is heard and described, but
the camera wearer cannot be seen speaking. Region I is the information that corresponds
to all modalities agreeing, e.g., the visible and audible plastering action in 2○. Our model’s
“align” phase detects any such (dis)agreements via pairwise contrastive learning on the
modalities. In the “refine” phase, we use the intersection of that agreement (region I)
to refine the embedding. For example, on the right, we show what the three modality
embeddings should look like after the “align” stage for examples 1 and 2. Embeddings
of instances where all modalities agree will be closer in the embedding space and apart
otherwise. In other words, for example 1, yellow (video) cannot be close to blue (audio)
unless green is too (language).

rely on a closed, pre-defined set of action categories. In particular, by focusing on

unscripted egocentric video from wearable cameras in daily-life settings [105, 57], we

aim to include subtle and long-tail scenarios unavailable in curated datasets, such as

sounds of keys jangling when unlocking a door, scissors snipping when cutting the

dog’s fur, or fingernails scratching on one’s own arm. Egocentric video is a particu-

larly attractive source here because 1) human interaction sounds are more audible in

near-field egocentric recordings and 2) passively captured long-form ego-video simply

covers more everyday sounds, including the rare ones.

However, the learning task is challenging because some visible actions do not

make any sound, and some sounds are the result of off-screen actions. Finally, other
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sounds may be correlated with on-screen objects (such as traffic noise and a city

street), but are not directly related to the video by a salient and visible camera wearer

action. For this reason, although existing self-supervised audio-visual methods [11,

12, 153, 211, 175, 90, 96, 6] are good at detecting audio-visual correspondences, they

tend to capture general correlations rather than the action-specific correspondence.

To address this challenge, we propose a novel multimodal consensus embed-

ding approach. Importantly, we suppose the in-the-wild egocentric training videos

are accompanied by free-form natural language descriptions describing the actions of

the camera wearer, as provided in the “narrations” of existing large-scale ego-video

datasets [105, 57]. The main idea is to seek video samples where there is semantic

agreement between all three modalities—the audio, visual, and language—while dis-

tancing those that do not. This intersection of the modalities with language assures

that correspondences in the audio and visual streams stem from alignment on the

sounding action.

To achieve this, the proposed model first aligns a preliminary embedding from

contrastive losses imposed per instance on each pair of modalities. Next, we re-

fine those embeddings with a consensus objective that targets a minimum (bottle-

neck) pairwise similarity. The latter pushes all pairs of inter-modality agreement

towards this consensus—or lack thereof—while jointly continuing to optimize the

paired-modalities’ contrastive losses. In this way, we overcome the simplifying as-

sumption made by existing multimodal embeddings that require all modalities to

agree [281, 96, 2]. See Figure 9.2.

We demonstrate our approach by training with in-the-wild data from Ego4D [105]

without audio labels and testing on both Ego4D and EPIC-Sounds [121]. To allow

a formal large-scale evaluation of sounding actions, we introduce a dataset of pro-

fessional annotations on 33K video clips spanning Ego4D. Our model successfully

discovers sounding actions that agree with ground truth labels on both datasets.

Compared to existing multimodal embedding paradigms [68, 175, 281, 96], our model
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not only better discovers sounding actions and learns embeddings for crossmodality

retrieval, but also generalizes better to the audio classification benchmark on EPIC-

Sounds. To our knowledge, this is the first result of its kind to show sounding actions

discovered organically from narrated in-the-wild video. We will release the data and

code for our models.

I first formulate the task in Sec. 9.1, introduce the approach in Sec. 9.2, cover

the training and evaluation data in Sec. 9.3 and lastly discuss the experimental results

in Sec. 9.4.

9.1 Task Formulation

We define a sounding action as a human-initiated action that produces sound

during its execution due to interactions with the surrounding environment. We are

particularly interested in learning how subtle and long-tail daily human actions sound.

If hypothetically we were given a clip with audio a, video v, and label y indicating

whether the clip contains a sounding action, our objective would be to minimize

the distance between audio-visual embeddings if y = 1 and maximize the distance

between them if y = 0, i.e., minimizing (−1)yD(ea, ev), where D measures the distance

and ea,v are their embeddings. However, we do not assume access to any such direct

supervision; labeling sounding actions is expensive, both because many actions do

not produce sounds, and because many clips do not contain actions. Instead, we aim

to discover sounding actions in a weakly supervised fashion, while simultaneously

learning multimodal embeddings that capture them well.

To this end, we leverage “narrations”, a form of language description that

is collected in recent egocentric video datasets such as Ego4D [105] and EPIC-

Kitchens [57]. These narrations are timestamped free-form sentences describing the

current action being performed by the camera-wearer. See Figure 9.2 for examples.

Note that there may be other events in the video, too (e.g., a TV is playing), but

these are not narrated. This is significant: the language specifically addresses near-
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field human interactions with objects, people, and the environment. The narrations

offer two key benefits: 1) the timestamps provide temporal grounding of actions that

occur in the video, indicating where potentially interesting clips are and 2) the lan-

guage provides semantic grounding of actions—which our multimodal consensus idea

will exploit to learn action-specific audio-visual correspondence.

Formally, given a video with frames v ∈ RT×H×W×C , audio a ∈ RS, and

language narration l, where T and S are the number of frames for video and audio

respectively, the goal is to learn embeddings ev and ea that are close in the embedding

space if both a and v capture the same human action described in l, and distant

otherwise. If we plot how the three modalities overlap in a Venn diagram (Figure 9.2),

we can see that what we are interested in learning is exactly region I, i.e., a camera-

wearer action that sounds. From an information-theory perspective, this is equivalent

to learning modality-invariant embeddings.

9.2 Multimodal Contrastive-Consensus Coding

Next we present our solution MC3 (Multimodal Contrastive-Consensus Cod-

ing) for learning modality-invariant embeddings, which consists of an inter-sample

contrastive loss and an intra-sample consensus loss. See Fig. 9.3. We first present the

two-stage training framework in Sec. 9.2.1 and then discuss the two losses in Sec. 9.2.2

and Sec. 9.2.3. For simplicity, we denote the n input modalities as Mi, i ∈ [1, n].

9.2.1 Align-Refine Two-stage Training

We design a two-stage training paradigm. The high-level idea is to first opti-

mize the pairwise agreement in an “align” stage, and then refine these embeddings

with global consensus in the “refine” stage. See Fig. 9.2.

In the first stage, we train modality encoders with a contrastive loss Lcontrastive,

which guides modality embeddings to have a good initial alignment that captures the

pairwise similarity between modalities that capture the same underlying action, as
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Figure 9.3: Multimodal contrastive-consensus loss. (a): Given three modality
embeddings eti, etj, etk, multimodal contrastive coding pulls each pair of modalities
closer while pushing modality pairs from another sample further away. (b): However,
not all modalities agree on how close they should be depending on the instance. Thus
we set the furthest distance a feature has with respect to the anchor feature as the
consensus and push the remaining embeddings away to meet this consensus.

opposed to random initialization.

In the second stage, we refine the pairwise-aligned embeddings with a globally

established consensus. Specifically, we train the model with a consensus loss Lconsensus

that pushes all intra-sample modality agreement towards this consensus, while jointly

optimizing the contrastive loss Lcontrastive, to maximally capture the shared informa-

tion across modalities. The MC3 loss LMC3 combines the contrastive and consensus

losses, and will be detailed below. We confirm experimentally that it is important to

keep the contrastive loss in the second stage, although the main purpose of this stage

is to refine embeddings with consensus.

9.2.2 Multimodal Contrastive Coding

crossmodal contrastive learning has been shown to discover representations

where modalities are informative of each other [192]. Prior work [288, 221] shows that

minimizing the contrastive loss between Mi and Mj maximizes the lower bound on

the mutual information I(Mi;Mj). Inspired by this, we first use contrastive learning

to optimize the pairwise similarities S(ei, ej) = eiej, where ei,j is the latent embedding
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normalized on the unit sphere for modality pair i, j. We use the InfoNCE [288] loss

to optimize each individual S(ei, ej) as follows:

Li,j = − 1

|B|
∑
t∈B

log
exp(etie

t
j/τ)∑

l∈B exp(etie
l
j/τ)

, (9.1)

where B is the batch and τ is the temperature. This loss treats modalities from

the same sample as positive pairs and pulls them closer and it treats modalities

from different samples as negative pairs and pushes them apart. See Fig. 9.3 (a). The

total loss is the sum of losses enumerated over all pairs of modalities, i.e., Lcontrastive =∑
i,j Li,j.

9.2.3 Multimodal Consensus Coding

The contrastive loss above attempts to bring all temporally co-occurring modal-

ities closer assuming there are strong correspondences among them in the input space.

However, naively doing so would be problematic for instances where not all modalities

agree (cf. Figure 9.2). To tackle this issue, we propose a novel objective that lever-

ages the consensus of inter-sample modalities discovered from the contrastive coding

as additional supervision.

First of all, we choose an anchor modality Ma, which serves as the point of

comparison for other modalities Mi, i ∈ [1, n], i ̸= a. With the normalized embedding

eti of modality i and sample t, we then compute the cosine similarity score between

each non-anchor modality and the anchor modality. Now, these similarity scores

may or may not agree with each other. To only learn embeddings shared across all

modalities, we set the consensus score as the minimum (bottleneck) score:

ct = K−1(min
i,i ̸=a

(K1(e
t
1e

t
a), ...,Kn(etne

t
a))), (9.2)

where Ki(x) = ((x + 1)/2)αi , x ∈ [−1, 1] is a modality-specific scaling function that

first maps scores to [0, 1] and then adjusts the distribution with a tunable parameter

αi. K−1 is the inverse function that maps the scaled score back to the original space.
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The intuition behind Ki(x) is that different modalities carry different amounts of

information and we want to normalize the score distributions among the different

modality pairs, making them comparable.

The consensus score ct is high if and only if all pairwise scores are high, and it is

low if there exists at least one modality that does not agree with the anchor modality.

After obtaining the consensus score, we design a loss that forces all modalities to follow

this consensus, as follows:

Lconsensus =
1

|B|
∑
t∈B

∑
i,i ̸=a

||etieta − ct||2 (9.3)

The total loss LMC3 is the sum of the contrastive loss (Eq. 9.1) and the con-

sensus loss (Eq. 9.3):

LMC3 = − 1

|B|(
∑
t∈B

∑
i,j

log
exp(etie

t
j/τ)∑

l∈B exp(etie
l
j/τ)︸ ︷︷ ︸

Inter-sample

−
∑
i,i ̸=a

||etieta − ct||2︸ ︷︷ ︸
Intra-sample

).
(9.4)

This loss pushes embeddings with a low consensus score apart while pulling together

embeddings with a high consensus score, and thus aligns embeddings better in the

joint embedding space. See Fig. 9.3.

Optimizing this loss is not trivial since it has both contrastive and reconstruc-

tion objectives. Indeed, directly optimizing the loss does not work well as shown in

the ablation study (Sec. 9.4.1). The proposed two-stage training paradigm (Sec. 9.2.1)

helps train the model stably.

9.2.4 Implementation Details

Our modalities of interest are M1 = A (audio), M2 = V (vision), and M3 = L

(language). There are six pairwise contrastive losses for three modalities. When
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computing the modality consensus, we empirically find using audio as the anchor

leads to the best results in our task (cf. Sec. 4.2.2). We set the scaling parameters αl

and αv to 1 and 0.5 respectively, based on a hyperparameter search on the validation

set.

For extracting the feature representations, we use TimeSformer [21] as our

video encoder, DistillBERT [242] as our text encoder, and AST [99] as our audio

encoder. We initialize the video and language encoders with embeddings from [165],

and the audio encoder with embeddings pretrained on ImageNet [64]. We train all

encoders. We choose these initial encoders due to their good results in the literature;

however, our MC3 loss is not specific to the choice of these encoders and others could

be swapped in.

We train all models on 8 A40 GPUs with a learning rate of 3e−5 and batch

size of 256 for 5 epochs for both stages, and take the final checkpoint for evaluation.

We use the Adam optimizer [143]. Our implementation is based on the codebase from

[165].

9.3 Training and Eval Data for Sounding Actions

Dataset. Ego4D [105] is a large-scale egocentric video dataset that has more than

3,600 hours of video recordings depicting hundreds of daily activities—and 2,113 of

those hours have audio available. As discussed, it also has time-stamped narrations

that are free-form sentences describing the current activity performed by the camera-

wearer. However, Ego4D has no annotation of whether an action makes sounds, what

sounds an action makes, or whether there exists other (non-action) sounds. It is thus

non-trivial to detect if an action in the clip makes sound based on simple heuristics,

e.g., the burst of sound energy, since many actions could produce continuous sounds

with ambient-sound characteristics, e.g., wiping tables or sawing wood.

We construct the training dataset by extracting clips from each Ego4D video

based on the narration timestamps. These clips cover a wide range of daily activities
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Wash Close Cut Drop Stir Wipe Rub Touch Lift Hold

0.90 0.82 0.77 0.64 0.64 0.53 0.39 0.27 0.19 0.09

Table 9.1: Example verb groups and how frequently they sound

and environments, including construction sites, cooking, arts and crafts, shopping,

farming, and many others. Since the timestamp is only an approximate point for

where an action occurs, we sample the clip from 0.5 s before to 1 s after the timestamp

(1.5 s duration) so that the clip is likely long enough to capture the action sound,

if there is any, without introducing visuals that stray from the narrated action. We

sample a training set of 250K clips from 1,876 hours of video. From their narrations,

we find there are 6,114 unique nouns (objects) and 2,819 unique verbs (actions).

Ground truth annotations for evaluation. Today’s egocentric video datasets

lack annotations for sounding actions. Thus, to determine how well our model learns

long-tail sounding actions and facilitate future research, we collect a large ground

truth evaluation set for Ego4D using professional annotators trained for the task. It

consists of 33K clips manually labeled as to whether or not the camera wearer’s action

sounds, i.e., indicating whether the action described in the narration is both visible

and audible in the clip.

To ensure annotation quality, in addition to providing concrete examples and

annotation guidelines and iterating with quality control feedback to the professional

annotators, we assign three annotators per clip and take the majority vote as the

correct answer. We split the 33K obtained annotations into 3K for validation and

30K for test. We stress that this is an eval set only; our training data (above) has no

manual labels about sound, only free-form language narrations.

Action type analysis. In total, among the 33,000 resulting ground truth clips,

17,693 are positive and 15,307 are negative. The fact that only half of this in-the-

wild clip distribution consists of sounding actions underscores the need for models
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that can tell the difference between audio that co-occurs with human action and ac-

tions that sound. To gain insight into the annotations, we group them by semantic

similarity and analyze them at a group level. While narrations provide semantic

descriptions of actions, using them for grouping would be too noisy since the same

action could be described in different ways. To reduce the influence of narration

variance, we utilize the taxonomy defined in Ego4D (for analysis only, not training).

For example, “check”, “examine”, and “inspect” should belong to the same group

(taxon). We first group these clips by verb alone, i.e., extracting verbs from narra-

tions and then applying the taxonomy, which results in 106 unique groups. We then

compute the percentage of clips in each group that make sounds. Tab. 9.1 shows

10 examples. We see that actions involving more significant human motions (wash,

close, cut) are more often sounding, whereas more subtle movements (lift, hold) are

often not. Importantly, there is not a one-to-one mapping between an action verb

and its sounding label—how actions sound is scenario-dependent and hence must be

mined from the data.

While grouping by verbs provides some insights, how actions make sounds also

depends on the object that they interact with, e.g., cutting a carrot sounds different

from cutting bread. To this end, we further group the 17K sounding clips by both

verbs and nouns, which results in 2,388 unique action groups. We plot the long-tail

distribution of them in Fig. 9.4 and show examples sampled from this distribution.

This plot shows the diverse and long-tail nature of sounding actions and our test set

annotations, which is not present in existing action datasets [121, 212, 85, 53, 261, 73].

9.4 Experiments

We compare our model with several baselines and ablations on three tasks:

sounding action discovery (on Ego4D), sounding action retrieval (on Ego4D), and

audio event classification (on EPIC-Sounds). We show our model outperforms an

array of existing learning methods.
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Wipe countertop
Pour dirt 

Scratch head
Paint wood

Figure 9.4: Long-tail distribution of sounding actions.
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Figure 9.5: Sounding action discovery accuracy

SotA Baselines. We consider two baselines that only use a contrastive loss for two

modalities: CLAP [68] for audio-language and CM-ACC [175] for audio-video. For

more than two modalities, we consider two more baselines: CMC [281] uses contrastive

objectives between all pairs of viewpoints (modalities in our case), representing the

joint training paradigm; ImageBind [96] learns the joint embedding by first perform-

ing vision-language pretraining and then freezing the vision encoder and training the

vision-audio modality pair. This represents strategies that align modalities sequen-

tially. For a fair comparison, we equip all baselines with the same encoder and the

same initialization as ours (see Sec. 9.2.4) while keeping their original losses.
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AV AL

ROC PR ROC PR

Random ✗ ✗ ✗ 0.500 0.559 0.500 0.559
CLAP [68] ✓ ✗ ✓ - - 0.637 0.695

CM-ACC [175] ✓ ✓ ✗ 0.540 0.590 - -
CMC [281] ✓ ✓ ✓ 0.550 0.601 0.635 0.693

ImageBind [96] ✓ ✓ ✓ 0.554 0.605 0.642 0.685

w/o Lconsensus ✓ ✓ ✓ 0.563 0.615 0.635 0.694
w/o Lcontrastive ✓ ✓ ✓ 0.436 0.493 0.584 0.620
w/o align-stage ✓ ✓ ✓ 0.448 0.507 0.464 0.521

MC3 ✓ ✓ ✓ 0.598 0.666 0.658 0.715

Table 9.2: Sounding action discovery. Area-under-curve (AUC) values are reported
for both ROC and precision-recall (PR) curves, for audio-vision (AV) and audio-
language (AL). Both are the higher the better. We train our model five times with
different seeds; the standard deviation is always within 0.01.

9.4.1 Sounding Action Discovery

Human interactions with objects in our daily lives are complex and subtle.

Due to many incidental background sounds, recognizing whether actions make sound

is not trivial but can be useful for applications like multimodal video generation,

e.g., verifying the generated action video and audio match. Towards this goal, we

answer the question “what actions sound?” by performing sounding action discovery.

In this experiment, we take the per-modality encoders learned on the narrated 250K

Ego4D clips and apply them to the 30K test clips. Given a test clip, we feed the

video and audio through their corresponding modality encoders, and compute the

cosine similarity between the output embeddings. That score indicates how likely

it is that the action in the video sounds. For completeness, instead of defining a

hard threshold for positives, we plot the ROC and precision-recall (PR) curves by

varying the positive threshold, and calculate the area-under-curve (AUC) values for

them—common metrics for classification [61, 277] that are invariant to the absolute

score values. For both metrics, higher values are better, indicating the model learns

meaningful embeddings of sounding actions. Similarly, we can also evaluate discovery
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for audio-language, if narrations are available.

Results. Table 9.2 shows the results for sounding action discovery. We first look

at discovery with audio-visual modalities alone at test time (“AV ” columns). CM-

ACC [175] discovers sounding actions much better than random chance, showing that

audio-visual contrastive learning captures both visual action embeddings and action

sound embeddings. CMC [281] and ImageBind [96] do better—benefiting (like us)

from the language modality at training time. However, neither the joint nor sequen-

tial training paradigm exploits modality agreement, resulting in weak crossmodal

constraints, and thus only marginal performance improvement. In comparison, our

model MC3 explicitly models the modality consensus and improves the discovery

result substantially by learning embeddings most relevant to sounding actions.

We also report the discovery result from using audio-language modalities

(“AL” columns). Since narrations provide action specifications, the discovery per-

formance is better than AV , e.g., CLAP [68] vs CM-ACC [175]. While CMC’s [281]

and ImageBind’s [96] joint training results are not much better than CLAP [68], our

model improves the “AL” discovery by leveraging the video modality and imposing

the trimodal consensus constraint.

Fig. 9.5 plots the precision-recall curves. For the audio-visual curve, our model

always has higher precision compared to baselines, especially when recall is low. This

is strong evidence of our model learning features of sounding actions, whereas base-

lines are limited to capturing general audio-visual correspondence—whether action-

based or not. We observe a similar trend for audio-language discovery.

Ablations. To study the importance of each loss and the two-stage training, we first

ablate the consensus loss in the second stage (“w/o Lconsensus” in Table 9.2), which

trains the model contrastively for both stages. The model performance drops signifi-

cantly, showing that exploring the modality consensus is key to learning how actions

sound. We then ablate the contrastive loss in the second stage (“w/o Lcontrastive”),

which harms performance even more. This suggests that Lconsensus functions like a
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Figure 9.6: Example visual embedding cluster from our model

regularization term that forces the Lcontrastive to learn sounding action embeddings.

Lastly, we ablate the two-stage training strategy by removing the align stage (“w/o

align-stage”), which optimizes LMC3 directly; this model fails badly. Aligning embed-

dings first is critical to making MC3’s training stable.

Clustering. To visualize the learned embeddings, we group video embeddings in

the test set with agglomerative clustering into 20 clusters. Fig. 9.6 shows the top 8

examples of one cluster. This cluster clearly captures the sound of water running. Not

only does it group videos with similar actions that make this sound, but also it shows

the learned embeddings are agnostic of the background (the bathroom example),

and unbiased by the head/hand movement since the cluster has varying degrees of

movement.

9.4.2 Sounding Action Retrieval

Retrieving a different modality given an action video, audio, or description is

another useful application, such as adding sound effects to silent videos or retrieving

captions for action sounds. To explore this setting, we answer the question “how

do different actions sound?” by evaluating the crossmodal retrieval performance of

long-tail sounding actions that are in the same category. Different from the binary
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V→A A→V L→A A→L
@5 @10 @5 @10 @5 @10 @5 @10

Random 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
CLAP [68] - - - -49.8 87.6 34.0 67.1

CM-ACC [175] 34.6 63.5 30.9 57.7 - - - -
CMC [281] 36.5 67.9 33.8 63.7 44.1 81.8 32.8 64.3

ImageBind [96] 32.8 61.5 29.7 57.9 42.6 76.5 30.6 60.5

w/o Lconsensus 33.9 63.0 30.0 56.1 45.0 84.7 32.9 65.8
w/o Lcontrastive 3.3 3.7 6.4 12.5 3.1 4.7 3.3 8.0
w/o align-stage 10.0 19.4 5.9 11.8 11.6 20.9 6.5 12.6

MC3 38.4 72.8 34.4 66.3 46.288.5 37.5 73.8

Table 9.3: Sounding action retrieval. We report Recall @5 and @10 for different
query-retrieval modalities.
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Figure 9.7: Qualitative examples for retrieval. The first row is video-to-audio re-
trieval, motivated by adding audio effects for silent videos. The second row is audio-
to-text retrieval, motivated by audio captioning applications. For each row, we show
three correct retrieval examples along with their text (gray indicates the text is not
observed by the model). For the retrieved item, we show the ground truth rank as
the superscript. All examples are long-tail sounding actions, showing how our model
learns to capture the features of how actions sound.

classification task above, here we aim to retrieve other examples of the same action.

To do this, we utilize the action groups constructed in Sec. 9.3 based on verbs

and nouns, and only keep groups that have more than two instances of sounding
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actions (such that there will be at least one true positive to retrieve for each query).

We then divide each action group equally into a query pool of 7,559 examples and

a retrieval pool of 7,032 examples. Given a query modality Mi of instance A, we

compute its distance to other modalities Mj of all instances in the retrieval pool. A

retrieval is correct if the retrieved instance B and A belong to the same action group.

Results. Table 9.3 shows the results for four different query-retrieval modality set-

tings. For audio-visual retrieval, we observe that all models can retrieve video with

audio (or audio with video) for similar actions with much higher recall than random

chance. Our model strongly outperforms the baselines and ablations, benefiting from

modeling the modality consensus explicitly. We also observe that retrieving audio

with video is easier than the opposite, likely because audio can be vague sometimes,

e.g., a collision sound might occur due to various actions while seeing a cutting ac-

tion indicates the likely sound. For audio-language retrieval, our model similarly

outperforms the baselines by large margins.

Qualitative examples. In Fig 9.7, we show examples for video-to-audio and audio-

to-language retrieval. Even though these actions are subtle, our model retrieves audio

or captions that are very relevant.

9.4.3 Audio Classification on EPIC-Sounds

Finally, we evaluate our learned representation on a standard audio bench-

mark. To assess the impact of our model’s action sounds representation, we consider

EPIC-Sounds [121], a challenging audio classification benchmark for sounds in kitchen

environments. To our knowledge, EPIC-Sounds represents the only large-scale bench-

mark for audio in egocentric video. Note, this classification task is different from the

sounding action discovery task in Sec. 9.4.1 in that here the model only takes an

audio clip as input.

We consider both linear-probe and fine-tuning settings. In the linear-probe

setup, we freeze the model weights and only train the last classification layer, which
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Top-1 Top-5 mCA MAP mAUC

Random - 7.71 30.95 2.29 0.023 0.500
ASF [138]* L 45.53 79.33 13.48 0.172 0.789

SSAST [100] L 28.74 64.84 7.14 0.079 0.755
MC3 L 42.44 78.76 12.79 0.153 0.818

ASF [138]* F 53.75 84.54 20.11 0.254 0.873
SSAST [100] F 53.47 84.56 20.22 0.235 0.879

MC3 F 55.97 85.86 21.65 0.242 0.885

Table 9.4: Results of classification on EPIC-Sounds. L: Linear-Probe; F: Fine-tuning.
* denotes pretraining with supervised audio classification while the rest are pretrained
in a self-supervised fashion.

evaluates the quality of the pre-trained representations. In the fine-tuning setup, we

fine-tune both the encoder and the last layer.

Table 9.4 shows the results. We compare with two SotA methods reported in

EPIC-Sounds: SSAST [100] and ASF [138]. SSAST is pretrained on LibriSpeech [214]

and shares the same network architecture as ours, while ASF is trained on VGG-

Sound with supervised learning. With linear-probe, our model strongly outperforms

SSAST [100], which, like us, is also pretrained in a self-supervised fashion with no

audio labels. ASF [138] does better than both, likely due to its advantage of su-

pervised audio classification pretraining. When fine-tuning, our model outperforms

both prior methods in all but one metric when following the same fine-tuning and

evaluation protocol. This shows our MC3 audio encoder—trained for sounding action

discovery—learns generalizable action sound embeddings, improving the state of the

art. The margins are naturally smaller in the fine-tuning regime, as is typical, since

all models have time to adapt to the new domain.

9.5 Conclusion

In this chapter, we explored the problem of learning how first-person actions

sound from in-the-wild, narrated egocentric videos—without audio labels. Training
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with 250K clips from Ego4D, we show the promise of our novel multimodal consensus

framework for accurately aligning representations to capture the long-tail of sounding

actions in novel (unnarrated) videos, with clear impact on sounding action discovery,

retrieval, and pre-training for audio classification.

While this is very exciting, there are also some limitations. First of all, the

most notable limitation is that we rely on synchronized narration data. Although

both Ego4D and EPIC-KITCHENS have such data, they do not come for free. This

limits our method from being applied to a wider range of data. One possible way

to address this might be using some foundational vision-language model to provide

captions thus the semantic grounding of correspondence.

Another limitation of this work is that contrastive learning preserves the se-

mantic information of the sound but not the temporal information. Thus for video-to-

audio generation, while the retrieved sound might be semantically relevant, the sound

is not guaranteed to have temporal consistency with the video. To lift this limita-

tion, we introduce a generative method to generate both semantically and temporally

matching sounds in the next chapter.
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Chapter 10: Action2Sound: Ambient-Aware

Generation of Action Sounds from Egocentric

Videos

In Chapter 9, I introduced a self-supervised approach for learning the em-

beddings of actions that make sounds. Building on the ideas of SoundingActions, I

expand the scope to go from discovering action-sound associations, to actually gen-

erating the sounds that could go with a given visual action in video. The task offers

a complementary way to study the fundamental problem of audio-visual actions and

understand the link from action to sound, and it also has various possible applica-

tions, such as creating sound effects for films or virtual reality games. To tackle the

generation problem for egocentric action videos, in this chapter, I introduce a gen-

erative method that takes a silent video and generates temporally and semantically

meaningful sounds for the video.

As discussed in the previous chapter, generating impact/action sounds is im-

portant for many real-world applications, such as text-to-video generation, generating

sound effects for films (Foley), or sound effect generation for virtual reality (VR) and

video games. Some prior work studies impact sound synthesis from videos [212, 268]

while others target more general video-to-audio generation [123, 174]. All these meth-

ods implicitly assume total correspondence between the video and audio and aim to

generate the whole target audio from the video. However, this strategy falls short

for in-the-wild training videos, which are rife with off-screen ambient sounds, e.g.,

traffic noise, people talking, or A/C running. While some of these ambient sounds

are weakly correlated with the visual scene, such as the wind blowing in an outdoor

environment, many of them have no visual correspondence, such as off-screen speech

or a stationary buzzing noise from the fridge. Existing methods are not able to dis-

entangle action sounds from ambient sounds and treat them as a whole, leading to

uncontrolled generation of ambient sounds at test time and sometimes even halluci-
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Foreground action sounds

Background ambient sounds
……

Ours: ambient awarePrior methods

Figure 10.1: Real-world audio consists of both foreground action sounds (whose causes
are visible in the FoV) and background ambient sounds that are generated by sources
offscreen. Whereas prior work is agnostic to this division when performing generation,
our method is ambient-aware and disentangles action sound from ambient sound. Our
key technical insight is how to train with in-the-wild videos exhibiting natural ambient
sounds, while still learning to factor out their effects on generation. The green arrows
reference how we condition generation on sound from a related, but time-distinct,
video clip to achieve this.

nation, e.g., random action or ambient sounds. This is particularly problematic for

generating action sounds because they are often subtle and transient compared to the

ambient sounds. For example, trained in the traditional way, a model given a scene

that looks like a noisy restaurant risks generating “restaurant-like” ambient sounds,

while ignoring the actual movements and activities of the foreground actions, such as

a person stirring their coffee with a metal spoon.

How can we disentangle the foreground action sounds from background ambi-

ent sounds for in-the-wild video data without ground truth separated streams? Simply

applying a noise removal algorithm on the target audio does not work well since in-

the-wild blind source separation of general sounds from a single microphone is still

an open challenge [297]. The key observation we have is that while action sounds

are highly localized in time, ambient sounds tend to persist across time. Given this

observation, we propose a simple but effective solution to disentangle ambient and

action sounds: during training, in addition to the input video clip, we also condition

the generation model on an audio clip from the same long video as the input video

clip but from different timestamps. See Fig. 10.1. By doing so, we lift the burden of
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generating energy-dominating ambient sounds and encourage the model to focus on

learning action cues from the visual frames to generate action sounds. At test time, we

do not assume access to (even other clips of) the ground truth video/audio. Instead,

we propose to retrieve an audio segment from the training set with an audio-visual

similarity scoring model, inspired by recent ideas in retrieval-augmented generation

(RAG) [140, 111, 163]. This benefits examples where the visual scene has a weak

correlation with the ambient sound that is appealing to capture, e.g., outdoor envi-

ronments.

Existing action sound generation work relies on either clean, manually-collected

data that has a limited number of action categories [212, 268, 53], or videos crawled

from YouTube based on predefined taxonomies [93, 46, 123]. To expand the boundary

of action sound generation to in-the-wild human actions, we take advantage of recent

large-scale egocentric video datasets [105, 57]. Though our model is not tailored to

egocentric video in any way, there are two main benefits of using these datasets:

1) egocentric videos provide a close view of human actions compared to exocentric

videos, where hand-object interactions are much smaller from a distance and often

occluded, and 2) these datasets have timestamped narrations describing atomic ac-

tions. We design an automatic pipeline to extract and process clips from Ego4D, and

curate Ego4D-Sounds with 1.2 million audio-visual action clips.

Our idea of disentangling action and ambient sounds implicitly in training

is model-agnostic. In this chapter, we instantiate it by designing an audio-visual

latent diffusion model (AV-LDM) that conditions on both modality streams for audio

generation. We evaluate our AV-LDM against recent methods on a wide variety of

metrics and show that our model outperforms the existing methods significantly on

both Ego4D-Sounds and EPIC-KITCHENS. We conduct a human evaluation study

that shows our model synthesizes plausible action sounds according to the video. We

also show promising preliminary results on virtual reality game clips. To the best

of our knowledge, this is the first work that demonstrates the disentanglement of
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Ground truth

Action sound

Existing models’ prediction

Misses action sounds but 
predicts ambient sounds

Figure 10.2: Illustration of the harm of ambient sound in video-to-audio generation.
In this example, this person is closing a packet of ginger powder, which makes some
rustling sound (red circled in the middle). There is also some buzzing sound seman-
tically irrelevant to the visual scene in the background, which dominates the energy
of the spectrogram. On the right-hand side, we show a prediction made by a vanilla
model that misses the action sound but predicts the ambient sound.

foreground action sounds from background sounds for action-to-sound generation on

in-the-wild videos.

I first introduce our proposed approach in Sec. 10.1, then present the dataset

in Sec. 10.2, and lastly discuss the experiments in Sec. 10.3.

10.1 Ambient-aware Action Sound Generation

We first discuss our high-level idea of how to guide the generation model to

disentangle action sounds from ambient sounds. We then extend the latent diffusion

models (LDM) to accommodate both audio and video conditions, which we name

AV-LDM. We also discuss our pretraining stage.

10.1.1 Action-to-Sound Generation

Given a video V ∈ R(T∗SV )×H×W×3, where T is the duration of the video and SV

is the video sample rate, and the accompanying audio waveform A ∈ R1×(T∗SA), where

SA is the audio sample rate, our goal is to model the conditional distribution p(A|V )

for video-to-audio generation. During training we observe natural video coupled with

its audio, whereas at inference time we have only a silent video—e.g., could be an

output from text-to-video generation, or a VR/video game clip, or simply a real-world

video for which we want to generate new plausible sounds.
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10.1.2 Disentangling Action and Ambient Sounds

Learning a video-to-audio generation model using in-the-wild egocentric videos

is challenging because of entangled foreground action and background ambient sounds,

as illustrated in Fig. 10.2. More specifically, the reasons are two-fold: 1) while action

sounds are usually of very short duration, ambient sounds can last the entire clip, and

therefore dominate the loss, leading to low-quality action sound generation; 2) while

some ambient sounds might be semantically related to the visual scene such as bird

chirping in the woods, in many cases, ambient sounds are difficult to infer from the

visual scene because they are the results of the use of certain microphones, recording

conditions, people speaking, off-screen actions, etc. Forcing a generation model to

learn those background sounds from video results in hallucinations during inference

(see examples in Fig. 10.6).

Therefore, it is beneficial to proactively disentangle action sounds and ambi-

ent sounds during training. However, separating in-the-wild ambient sounds is still

an open challenge as recent models rely on supervised training on artificially mixed

sounds, for which the ground truth complex masks can be obtained [297]. Simply

applying off-the-shelf noise reduction methods to training data leads to poor perfor-

mance, as we will show in Sec. 10.3.

While it is difficult to explicitly separate the ambient and action sound in the

target audio, our key observation is that ambient sounds are usually fairly stationary

across time. Given this observation, we propose a simple but effective method to

achieve the disentanglement. During training, in addition to video clip V , we also

provide the model an audio clip An that comes from the same training video but

a different timestamp as the input video clip (see Fig. 10.3). Therefore, instead of

modeling p(A|V ), we model p(A|V,An). Given the hypothesis that An is likely to

share ambient sound characteristics with A, it can take away the burden of learning

weakly correlated or even uncorrelated ambient sounds from visual input alone, and

encourages the model to focus on learning action features from the visual input. For
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Figure 10.3: Audio condition selection and the model architecture. Left: During
training, we randomly sample a neighbor audio clip as the audio condition. For in-
ference, we query the training set audio with the (silent) input video and retrieve an
audio clip that has the highest audio-visual similarity with the input video using our
trained AV-Sim model (Sec. 10.1.5). Right: We represent audio waveforms as spec-
trograms and use a latent diffusion model to generate the spectrogram conditioned on
both the input video and the audio condition. At test time, we use a trained vocoder
network to transform the spectrogram to a waveform.

the selection of An, we randomly sample one audio clip from the nearest X clips in

time. While there is no guarantee that the sampled audio shares exactly the same

ambient sound with the target audio, their ambient sounds should largely overlap

since they are close in time, which provides a consistent learning signal to help the

model learn the disentanglement.

10.1.3 Retrieval Augmented Generation and Controllable Generation

While during training we have access to the clips in the same long video as

the input clip, we of course cannot access that information at test time. How we

select An at test time depends on the purpose of the generation. We consider two

use cases: action-ambient joint generation and action-focused generation. In the first

scenario, we would like the model to generate both the action sound and the ambient

sound that is plausible for the visual environment. This is, for example, useful for

generating sound effects for videos. In the latter scenario, we would like the model to

focus the generation on action sounds and minimize ambient sounds, which is useful,

for example, for generating sounds for games. Fig. 10.4 depicts the two scenarios.
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Figure 10.4: Two inference settings: “action-ambient joint generation” and “action-
focused generation”. In the first setting, we condition on audio retrieved from the
training set and aim to generate both plausible action and ambient sounds. In the
second setting, we specify an audio file with low ambient sound and the model focuses
on generating plausible action sounds while minimizing the ambient sounds.

For action-ambient joint generation, we want An to be semantically relevant

to the visual scene. Inspired by recent work in retrieval augmented regeneration, we

propose to retrieve audio such that:

An = arg max
Ai∈D

AV-Sim(Ai, V ), (10.1)

where D is the dataset of all training audio clips and V is the (silent) input video.

AV-Sim(A, V ) is a similarity scoring function that measures the similarity between A

and V , which we will cover in Sec. 10.1.5.

For action-focused generation, we want An to have minimal ambient level. We

find simply filling An with all zeros results in poor performance, likely because it is

too far out of the training distribution. Instead, we find conditioning the generation

on a low-ambient sound will hint the model to focus on action sound generation and

generate minimal ambient sound. See Sec. 10.3.3.

10.1.4 Audio-Visual Latent Diffusion Model

While the above idea of disentanglement is universal and not specific to any

model architecture, here we instantiate this idea on diffusion models due to their

success in audio generation [167, 174]. We extend the latent diffusion model to ac-
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commodate our audio-visual conditions, thus yielding an audio-visual latent diffusion

model (AV-LDM).

Fig. 10.3 (right) shows the architecture of our model. During training, given

audio waveform target A, we first compute the mel-spectrogram x0 ∈ RT×Dmel , where

Dmel is the number of mel bins. We then use a pretrained Variational Autoencoder

(VAE) to compress the mel-spectrogram x0 to a latent representation z0 ∈ RC′×H′×W ′
,

where z0 is the generation target of the LDM. We condition the generation on both

the video feature cv ∈ RTv ,Dc and audio feature ca ∈ RTa,Dc . We extract the video

feature with a pretrained video encoder (see Sec. 10.1.5) from V . We extract the

audio feature from the audio condition An with the same VAE encoder and then

transform the feature into 1-d vector with a multilayer perceptron (MLP).

Following [174], we use cross attention where the query is produced by zt,

which is the sample diffusion step t, and key and value are produced by

concat([Posv + cv; Posa + ca]), where Pos denotes learnable positional embeddings.

The model is trained with the denoising objective:

L = Et∼uniform(1,T ),z0,ϵt∥ϵt − ϵθ(xt, t, cv, ca)∥2,

where ϵt is the standard Gaussian noise sampled for diffusion step t, and ϵθ(xt, t, cv, ca)

is the model estimation of it (θ represents model parameters).

The reverse process can be parameterized as:

p(zT ) = N(0, I),

pθ(zt−1|zt) = N(zt−1;
1√
αt

(
zt −

1 − αt√
1 − ᾱt

ϵθ(zt, t, cv, ca)
)
, σ2

t I),

where αt and σt are determined by noise schedule of the diffusion process. To generate

audio during inference, we first sample standard Gaussian noise zT , and then apply

classifier free guidance [119] to estimate ϵ̃θ as

ϵ̃t(zt, t, cv, ca) = ωϵθ(zt, t, cv, ca) + (1 − ω)ϵθ(zt, t, ∅, ∅),
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where ∅ denotes zero tensor. For the above estimation to be more precise, during

training, we randomly replace cv with ∅ with probability 0.2. As for ca, we found

dropping it even with even a small probability harms the performance, and therefore

we always condition the LDM with ca.

During inference, we use DPM-Solver [172] on LDM to sample a latent repre-

sentation, which is then upsampled into a mel-spectrogram by the decoder of VAE.

Lastly, we use a vocoder (HiFi-GAN [151]) model to generate waveform from the

mel-spectrogram.

10.1.5 Audio-Visual Representation Learning

Generating semantically and temporally synchronized action sounds from video

requires the video encoder to capture these relevant features. In addition, we would

like to train a video model and an audio model whose representations align in the

embedding space to support retrieval-augmented generation discussed in Sec. 10.1.3.

For this purpose, we train a video encoder and audio encoder contrastively to optimize

the following objective:

AV-Sim(A, V ) = − 1

|B|
∑
t∈B

log
exp(etAe

t
V /τ)∑

l∈B exp(etAe
l
V /τ)

,

where B is the current batch of data, etA and etV are normalized embeddings of the

audio and video features, τ is a temperature parameter. To leverage the full power of

narrations on Ego4D, we initialize the video encoder weights from models pre-trained

on video and language from [165].

10.1.6 Implementation Details

We use Ego4D-Sounds (see Sec. 10.2) to train our AV-LDM. Video is sampled

at 5FPS and audio is sampled at 16kHz. Video is passed through the pre-trained

video encoder to produce condition features cv ∈ R16×768. The audio waveform is

transformed into a mel-spectrogram with a hop size of 256 and 128 mel bins. The

mel-spectrogram is then passed to the VAE encoder with padding in the temporal
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C opens the blender
C drops the twig in his 

left hand on the ground C paints the canvas C places toy in the box
C removes soil with 

the hoe C sews cloth

Figure 10.5: Example clips in Ego4D-Sounds. We show one video frame, the action
description, and the sound for each example. Note how these actions are subtle and
long-tail, usually not present in typical video datasets.

Datasets Clips Language Action Types

The Greatest Hits [212] 46.6K ✗ Hit, scratch, prod
VGG-Sound [46] 200K Video tags Not action-specific

EPIC-SOUNDS [122] 117.6K Audio labels Kitchen actions
Ego4D-Sounds 1.2M Action narrations In-the-wild actions

Table 10.1: Comparison with other audio-visual action datasets. Ego4D-Sounds not
only has one order of magnitude more clips, but it is also coupled with language
descriptions, supporting evaluation of sound generation based on semantics.

dimension to produce target z0 ∈ R4×16×24. The audio condition is processed the

same way except that we use an additional MLP to process VAE’s output to produce

ca ∈ R24×768. We load the weights of VAE and LDM from the pretrained Stable

Diffusion to speed up training, similar to [174], and VAE is kept frozen during training.

LDM is trained for 8 epochs with batch size 720 on Ego4D-Sounds with the AdamW

optimizer with learning rate 1e− 4. During inference, we use 25 sampling steps with

classifier-free guidance scale ω = 6.5. For HiFi-GAN, we train it on a combination

of 0.5s segments from Ego4D[105], Epic-Kitchens [122], and AudioSet [93]. We use

AdamW to train HiFi-GAN with a learning rate of 2e − 4 and batch size of 64 for

120k steps. We set the number of random nearby audio samples X = 6.

221



10.2 The Ego4D-Sounds Dataset

Next we describe our efforts to curate Ego4D-Sounds, an audio-video dataset

for human action sound generation. Our goal is to curate a high-quality dataset for

action-audio correspondence for action-to-sound generation, addressing the issue of

limited action types in the existing impact sound datasets [212, 54].

Ego4D [105] is an existing large-scale egocentric video dataset that has more

than 3,600 hours of video recordings depicting hundreds of daily activities; 2,113 of

those hours have audio available. It also has time-stamped narrations that are free-

form sentences describing the current activity performed by the camera-wearer. We

first utilize the narration timestamps in Ego4D to extract clips. However, not all clips

have meaningful action sounds and there are many actions like “talk with someone”,

“look around”, “turn around” that have low audio-visual correspondence. We then

use an automatic pipeline to process all extracted clips to create the Ego4D-Sounds

dataset, which has 1.2 million audio-visual action clips. Similarly, for the test set, we

curate 11k clips for evaluation. We show examples in Fig. 10.5 and comparison with

other datasets in Tab. 10.1.

For all resulting clips, we extract them as 3s clips with 224 × 224 image reso-

lution at 30 FPS. For audio, we extract them as a single channel with a 16000 sample

rate.

10.3 Experiments

In this section, we first present the evaluation metrics, and then the results

on Ego4D-Sounds along with human evaluation. We also discuss results on EPIC-

KITCHENS, and qualitative results on VR games.

10.3.1 Evaluation

To evaluate the performance of our model, we use the following metrics:

1. Fréchet Audio Distance (FAD) [141]: evaluates the quality of generated audio
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clips against ground truth audio clips by measuring the similarity between their

distributions. We use the public pytorch implementation. ∗

2. Audio-visual synchronization (AV-Sync) [174]: a binary classification model

that classifies whether the video and generated audio streams are synchronized.

Following [174], we create negative examples by either shift audio temporally

or sample audio from a different video clip.

3. Contrastive language-audio contrastive (CLAP) scores [310]: evaluates the se-

mantic similarity between the generated audio and the action description. We

finetune the CLAP model † on the Ego4D-Sounds data and compute scores for

the generated audio and the narration at test time.

These metrics measure different aspects of generation collectively, including the dis-

tribution of generated samples compared to the ground truth clips, synchronization

with the video, and the semantic alignment with the action description.

We compare with the following baseline methods:

1. Retrieval: we retrieve the audio from the training set using the AV-Sim model

introduced in Sec. 10.1.5. This method represents retrieval-based generation

models such as ImageBind [96].

2. Spec-VQGAN [123]: a video-to-audio model that generates audio based on a

codebook of spectrograms. We run their pre-trained model on our test set.

3. Diff-Foley [174]: a recent LDM-based model. We follow their fine-tuning steps

on egocentric videos to train on our dataset.

Neither learning-based model has the ability to tackle the ambient sound, whereas

our model disentangles it from the action sound.

∗https://github.com/gudgud96/frechet-audio-distance
†https://github.com/LAION-AI/CLAP
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FAD ↓ AV-Sync (%)↑ CLAP↑
Ground Truth (Upper Bound) 0.0000 77.69 0.2698

Retrieval 1.8353 11.84 0.0335
Spec-VQGAN [123] 3.9017 7.12 0.0140

Diff-Foley [174] 3.5608 5.98 0.0346

Ours w/o vocoder 4.9282 29.60 0.1319
Ours w/o cond + denoiser 1.4676 1.09 0.0009

Ours w/o cond 1.4681 39.63 0.1418
Ours w/ random test cond 1.0635 28.74 0.1278

AV-LDM (Ours) 0.9999 45.74 0.1435

Table 10.2: Results on Ego4D-Sounds test set. We also report the performance of
the ground truth audio, which gives the upper bound value for each metric.

In addition, we also evaluate the following ablations: “w/o vocoder”: we

replace the trained HiFi-GAN vocoder with Griffin-Lim; “w/o cond”: we remove the

audio condition at training time; “w/o cond + denoiser”: we use an off-the-shelf

model to denoise the target audio ‡; “w/ random test cond”: we use random audio

from the training set as the condition instead of retrieving audio with the highest

AV-Sim score.

10.3.2 Results on Ego4D-Sounds

In this section, we evaluate the ambient-sound joint generation setting with

retrieval augmented generation. The results are shown in Tab. 10.2. Compared to all

three baselines, we outperform them on all three metrics by a large margin. While

the Retrieval baseline retrieves natural sounds from the training set and has a low

FAD score compared to Spec-VQGAN and Diff-Foley, both its AV-Sync accuracy and

CLAP scores are very low. Diff-Foley has a higher performance than Spec-VQGAN

since it has been trained on this task, but it still largely underperforms our model w/o

cond, likely because their video features do not generalize to the egocentric setting

well.

‡https://github.com/timsainb/noisereduce
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Ground Truth AV-LDM (Ours) AV-LDM w/o cond Diff-foley Retrieved

in sync hallucination
action sound
missing + hallucin. out of syncaction

sound

action
sound

in sync
plausible

out of sync

hallucination

out of sync

Figure 10.6: Qualitative example. We show the frames of each video followed by the
waveform/spectrogram of various baseline methods. Our model generates the most
synchronized sounds.

For ablations, “Ours w/o cond” has a much worse FAD score compared to

the full model, showing the importance of our ambient-aware training. As expected,

“Ours w/o cond + denoiser” has very low scores on AV-Sync and CLAP since ex-

isting noise reduction algorithms are far from perfect. We also test our model by

conditioning it on a random audio segment at test time instead of the one retrieved

with the highest audio-visual similarity and its performance also gets worse, verifying

the effectiveness of our retrieval-based solution.

We show two qualitative examples in Fig. 10.6 comparing our model with

several baselines and we show that our model synthesizes both more synchronized

and more plausible sounds.

10.3.3 Ambient Sound Control

By disentangling action sounds from ambient sounds, our model allows taking

any given sound as the condition at test time. To examine whether our model truly

relies on the audio condition to learn the ambient sound information, we test the
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(a) Varying ambient level condition (b) Audio generation accuracy (FAD)

Figure 10.7: The achieved ambient level and accuracy of the prediction as a function
of the input ambient levels. (a): we show the ambient level of our model changes
according to the ambient level in the audio condition while the ambient level of
“Ours w/o cond” and the original audio stay constant, illustrating the controllability
of our model. (b) FAD is low for most input ambient levels unless it goes too extreme
(too low or too high), showing our model generates high-quality action sounds even
when varying output ambient levels.

model by providing audio conditions of various ambient levels and then calculate

the ambient level in the generated audio. The ambient level is defined as the lowest

energy of any 0.5s audio segment in a 3s audio.

The results are shown in Fig. 10.7, where we also plot the ambient levels of

“Ours w/o cond” and the original audio. Our model changes the ambient sound level

according to the input ambient (shown in Fig. 10.7a) while still synthesizing plausible

action sounds (shown in Fig. 10.7b). FAD spikes when the condition ambient is too

low or too high, most likely because the generated ambient sound is out of distribution

since the original audio always has some ambient sounds.

Fig. 10.8 shows example outputs from our model and several baselines. The

examples show how our model generates plausible action sounds when conditioned

on a low-ambient sound for action-focused generation. We can see that the action-

focused setting generates similar action sounds as the action-ambient setting while

having a minimal ambient level. While by definition we lack a good evaluation of this

setting (there is no ground truth audio source separation for the data), our model
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Original audio Ours w/o condDiff-foley Ours (action-ambient) Ours (action-focused)

C closes a packet 
of ginger power

C puts the tissue 
in the bin

Figure 10.8: Visualization of action-focused generation. For both examples, Diff-
Foley [174], Ours w/o cond or Ours (action-ambient generation) generate plausible
action sounds along with ambient sounds. In contrast, our model conditioned on a
low ambient sound generates plausible action sounds (see green boxes) with minimal
ambient sound.

shows an emerging capability of generating clean action sounds although it has never

been explicitly trained to do so.

10.3.4 Human Evaluation

To further validate the performance of various models, we conduct a subjective

human evaluation. In each survey, we provide 30 questions and each question has 5

videos with the same visuals but different audio samples. For each video, we ask the

participant to select the video(s) whose audio 1) is most semantically plausible and

temporally synchronized with the video and 2) has the least ambient sounds. We

invite 20 participants to complete the survey and compute the average voting for all

30 examples.

Tab. 10.3 shows the results. Overall, all learning-based methods generate

reasonable action sounds while our model (action-ambient) has the highest score for

action-sound quality compared to other methods. Although ours (action-focused) has

a slightly lower action-sound score, it has significantly less ambient sound. This is

likely because sometimes the low-ambient condition can lead the model to suppress

some minor action sounds.
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Action sound quality Least ambient sound

Retrieval 12.5% 12.5%
Diff-Foley [174] 47.5% 12.5%

AV-LDM w/o cond 55.0% 17.5%
AV-LDM (action-focused) 60.0% 97.5%
AV-LDM (action-ambient) 72.5% 22.5%

Table 10.3: Survey results showing user preferences. Higher is better. Our model in
the action-ambient joint generation setting scores highest for action sound quality,
showing its ability to produce action-relevant sounds despite training with in-the-
wild data. Ours in the action-focused generation setting scores highest for the least
ambient sound, at a slight drop in action sound quality score, showing the ability to
eliminate background sounds when requested by the user.

GT Retrieval Diff-Foley Ours w/o cond AV-LDM (Ours)

FAD ↓ 0.0000 1.9618 3.4649 1.4731 1.3200
AV-Sync (%) ↑ 73.94 13.84 14.19 50.42 59.26

Table 10.4: Results on Epic-Kitchens. GT stands for Ground Truth.

10.3.5 Results on EPIC-KITCHENS

To evaluate whether our model generalizes to other datasets, we also test our

model on the EPIC-KITCHENS dataset. We first sample 1000 3s clips on EPIC-

KITCHENS and then evaluate the retrieval baseline, Diff-Foley, Ours w/o cond, and

our full model on these data and then compute the FAD and AV-Sync scores for

them.

Results are shown in Tab. 10.4. Similar to what we observe on Ego4D-Sounds,

our model outperforms other models on FAD and AV-Sync by a large margin, showing

ours learns better to generate action sounds from visuals, which also transfer to other

datasets.

10.3.6 Demo on VR Cooking Game

One compelling application of action-to-sound generation is to generate sound

effects for games in virtual reality, where simulating complex hand-object interactions
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Video game audio Generated audio (ours)

Game 
music

3 knife 
cuts

3 knife 
cuts

Figure 10.9: We apply our model on a VR cooking game clip where the person cuts
a sushi roll three times. Our model successfully predicts the 3 cutting sounds.

is non-trivial. To examine whether our learned model generalizes to VR games, we

collect game videos of a cooking VR game “Clash Of Chefs” from YouTube and test

our model without fine-tuning. Preliminary results suggest our model can generate

synced action sounds (see Fig. 10.9). This suggests a promising future in learning

action-to-sound models from real-world egocentric videos and applying them to VR

games to give a game user an immersive audio-visual experience that dynamically

adjusts to their own actions.

10.4 Conclusion

We investigate the problem of generating sounds for human actions in ego-

centric videos. We propose an ambient-aware approach that disentangles the action

sound from the ambient sound, allowing successful generation after training with di-

verse in-the-wild data, as well as controllable conditioning on ambient sound levels.

We show that our model outperforms existing methods and baselines—both quan-

titatively and through human subject studies. Overall, it significantly broadens the

scope of relevant training sources for achieving action-precise sound generation.

While we showed some working demos on VR games as a proof of concept,

the model does not generalize to game videos robustly due to visual discrepancy.

To transfer a generative model trained on the real data to the simulation data in a

229



zero-shot manner requires further investigation and research, e.g., by incorporating

domain transfer techniques.

By conditioning the generation on a nearby audio segment, we disentangle

ambient sounds from action sounds, assuming the conditioned audio and the target

audio share ambient sound characteristics. In this chapter, a random neighbor works

in most cases, but there are scenarios where a random neighbor would pick an audio

segment that does not share the background sound. It is potentially helpful to use

a learning-based method to intelligently pick the audio condition to further improve

the performance.
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Chapter 11: Conclusions and Future Work

In the preceding chapters, I presented my thesis research on 4D audio-visual

learning. I covered topics on simulating realistic sounds in 3D environments, enabling

embodied agents to move to find sounding objects while seeing and hearing, synthe-

sizing audio with acoustics corresponding to the visual observations, and learning

action sounds in egocentric videos. The key element in my research is the link be-

tween sounds and 3D scenes, i.e., how sounds are transformed by the environment

and how 3D scenes are perceived with vision. Understanding this correspondence is

essential to both the robotics and AR/VR applications I investigated.

While studying this correspondence in various applications, I have made the

following important technical contributions that are applicable beyond my task set-

tings and applications:

1. I devise a hierarchical reinforcement learning policy to improve navigation effi-

ciency in Chapter 4. This policy shows the importance of decoupling high-level

planning with low-level navigation for decision-making in active audio-visual

perception, which is also applicable to other robotics tasks.

2. I design a transformer-based navigation policy in Chapter 5 that can locate a

sounding object even after the sound stops. This demonstrates the potential

of using transformers to model long-range context and serve as a memory for

embodied agents, especially when dealing with highly dynamic audio signals.

3. I propose frequency-adaptive prediction that does better sim2real transfer for

audio-visual navigation in Chapter 4. This shows the importance of investi-

gating the spectral discrepancy for acoustic sim2real transfer and treating it

accordingly rather than regarding all frequencies as the same.
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4. I design the acoustic alteration strategy to create self-supervision to learn from

YouTube videos in Chapter 7. This strategy addresses the data challenge for

visual-acoustic learning and enables learning acoustic correspondence from In-

ternet videos that do not have annotations or paired clean audio.

5. I use language to provide grounding for audio-visual correspondence learning

in Chapter 9. This approach extends audio-visual learning from learning from

curated datasets to learning from in-the-wild videos where there is no annotation

indicating how visuals and sounds correspond.

6. I propose to disentangle ambient/action sounds for better video-to-audio gen-

eration in Chapter 10. This disentanglement allows controllable generation and

also shows promising direction in learning from in-the-wild video data where

sounds of interest and backgrounds are coupled.

While exciting first steps, there remain many open research problems that

need further investigation. More specifically, I am interested in the following three

problems: 1) guiding audio-visual generation with perceptual metrics, 2) collecting

large-scale visual-acoustic datasets, and 3) the inverse rendering problem in acoustics.

I will detail these problems below.

Learning with perpetual metrics. I introduced multiple generation algorithms

in this thesis, including generating acoustics from images, novel-view acoustic syn-

thesis, or action sound generation. These algorithms are typically optimized with

objective loss functions such as Euclidean distance or some generative losses. These

losses do not necessarily align with human perception of the sound, especially for

binaural sounds. It is thus important to take into account human perception while

learning the generation model.
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Collecting large-scale real-world visual-acoustic data. One of the main mo-

tivations behind introducing SoundSpaces was to make it easier to study the cor-

respondence between sight and sound in spaces in a clean and controllable setting

because collecting such data in the real world is very expensive. SoundSpaces has

enabled much research work to explore this correspondence and showed the potential

of building machine-learning models that perceive the 3D space both visually and

acoustically. However, there is some unavoidable domain gap when applying models

trained on simulated data to real-world applications. To improve models’ perfor-

mance on these tasks, it is important to collect large-scale and high-quality data to

train machine learning models in domain.

Inverse rendering. Generating sounds given visuals (either an image of the 3D

environment or an egocentric video of human actions) is challenging but what about

the inverse process? Can we infer the material properties of objects or the geometry

properties of spaces from both audio and visual observations? Compared to genera-

tion, this is more difficult due to the lack of intermediate annotations or data. This

poses a new challenge in both building learning models as well as collecting the right

data for these tasks.
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