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Human perception is multisensory

We often use vision, audio, touch, smell to sense the world




The status quo of audio-visual learning

Object-centric:
the semantic correspondence between sight and sound of objects
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Autonomous agents

Home assistance robot Rescue robot

Robots that can navigate and localize sounding objects by reasoning the
spatial, semantic, acoustic information in the audio and visual observation



Augmented reality and virtual reality

Enhanced hearing Immersive experience
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AR/VR systems that can augment the hearing ability of the device wearer
as well as create immersive experiences for users



4D audio-visual perception

My research: learning the correspondence
between sight and sound in spaces

Y

| Time




4D audio-visual perception

My research: learning the correspondence
between sight and sound in spaces
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Simulating sounds in spaces
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Navigating with sounds in spaces Synthesizing sounds in spaces

SoundSpaces [ECCV20]

Direct sound

Audio-visual navigation SoundSpaces [ECCV20]
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Semantic audlo-V|suaI navigation [CVPR21]

bl No sound
4 Sink
Found
y

N ~
= & 2 Water drippi g
Sink or Shower?
smagm ahead
. : s Waterdnwlnge
| ?
84 To my right

Visual acoustic matching [CVPR22]

Target Space
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Novel-view acoustic synthesis [CVPR23]
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Audio-visual dereverberation [ICASSP23]
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Simulating embodiment in 3D scenes

Gibson Matterport3D | Replica

Chang et al., 3DV 2017 At

T

Datasets

Semantic .

Simulators %quitqt |E| SOn AIZTHR

Savva et al., ICCV 2019 Xia et al., ICRA 2020 Kovle et al., arXiV 2017

Advantages: Large-scale training, fast experimentation, consistent benchmarking and replicable research

S. 2 R | Sim2Real Predictivity: Does Evaluation in Simulation Predict Real-World Performance, Kadian et al., IRAL 2020
Im eda Sim-to-Real Transfer for Vision-and-Language Navigation, Anderson et al., CoRL 2020

RoboThor: An Open Simulation-to-Real Embodied Al Platform, Deitke et al., CVPR 2020



Enabling embodied agents and tasks

Source: Gibson
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Today’s embodied agents (robots) are deaf

« We want robots that can see, hear and react in the environment

. -

Vision-Onl Vision-Language

Gupta et al., 2017 Anderson et al., 2018
Zhu et al., 2017 ™% r Wang et al., 2018
Sava et al., 2019 1. Wang et al., 2019

Vision-Interaction | Vision-Audio
Zhu et al., 2017 Chen and Jain et al., 2020
Gordon et al., 2018 (this work)

Wortsman et all, 2019

* No existing simulation supports audio-visual rendering
* No existing formulation for audio-visual navigation
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C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



SoundSpaces demo

C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



Background: acoustic simulation

Goal: simulate a perceptually-
valid approximation of the room

impulse response (RIR)

Direct sound

Early Reflections

Late Reverberation
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Physics-based audio rendering

3D Geometry

E—

Material Properties
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Simulate the sound received by the listener from a source location
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Sound propagation system

3D spatial audio for reflections and reverb with realistic acoustics
based on bidirectional ray tracing

Transmission 'JJ

o .
O\\ Qé Reflection
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Real-scan environments

Replica’ dataset Matterport3D2 dataset

Panoramas

"The Replica Dataset: A Digital Replica of Indoor Spaces, Straub et al., arXiv, 2019
2Matterport3D: Learning from RGB-D Data in Indoor Environments, Chang et al., 3DV, 2017
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SoundSpaces: our audio simulator

SoundSpaces produces realistic audio rendering based on the room
geometry, materials, and sound source location by precomputing the room
impulse response function (RIR)

Users can insert any sound of their choice at runtime. The received sound is
obtained by convolving the RIR with the source sound.

# Scenes Avg. Area # RIRs
Replica 18 47.24 m2 0.9M
Matterport3D 85 517.34 m? 16.7M

Table: Summary of dataset statistics

Visit soundspaces.org for more information!

C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



Enabling audio-visual embodied Al and beyond

Audio-Visual Separation
Majumder et al ICCV 2021

Audio-Visual Navigation Echolocation Learning
Chen et al., ECCV 2020 Gao et al., ECCV 2020

ol L
Main limitations: :,':1!!::
1. Expensive to store millions of IRs

2. Does not generalize to new locations or environments

Microphones are not configurable

\

Room Map



SoundSpaces 2.0: A fast, continuous, configurable
and generalizable audio-visual simulation platform
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Changan Chen et al., SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning, NeurlPS 2022



Continuous rendering

We offer both spatial and acoustic continuity.

Navigating to someone speaking

Changan Chen et al., SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning, NeurlPS 2022

20



Configurable simulation

Users can change all these parameters!

Simulation parameters Microphone types Material properties

* Frequency bands * Mono « Absorption coefficients
 Direct sound « Binaural « Scattering coefficients

* Indirect sound « Stereo * Transmission coefficients
* Transmission * Quad « Damping coefficients
 Diffraction e Surround 5 1 * Frequency band specs

* Number of rays e Surround 7 _1 * Instance level config

* Number of threads « Ambisonics . ...

« Sample rate * Your mic array

Changan Chen et al., SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning, NeurlPS 2022



Generalizable simulation

We support arbitrary scene datasets.

Gibson | X Replica
X/a etal, CVPR 2018 1 n Straub et al., arXiV 2019

HM3D
Ramakrishnan et al., NeurlPS 2021 - Grauman et al., CVPR 2022

Changan Chen et al., SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning, NeurlPS 2022
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Validating simulation with real IRs

We collect acoustic measurements of the apartment in Replica dataset and
compare to IRs rendered in SoundSpaces

SoundSpaces 2.0 has a better match of direct-to-reverberant ratio with real

0 —~Measured
5 SoundSpaces
~SoundSpaces 2.0
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-10 u
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SoundSpaces i
—-15 —SoundSpaces 2.0
1 2 3 4 5 6 7 00 02 04 06 08 1.0
Measurement Position Time (s)
DRR comparison Early decay comparison

Changan Chen et al., SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning, NeurlPS 2022
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Main differences
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4D audio-visual perception

My research: learning the correspondence
between sight and sound in spaces

!

Simulating sounds in spaces

I

Navigating with sounds in spaces

}

Synthesizing sounds in spaces

SoundSpaces [ECCV20]

Audio-visual navigation SoundSpaces [ECCV20]
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Semantic audlo-V|suaI navigation [CVPR21]
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Visual acoustic matching [CVPR22]

Target Space

Source Audio Output Audio
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Novel-view acoustic synthesis [CVPR23]

audio: target viewpoint

Audio-visual dereverberation [ICASSP23]

Panoramlc V|ew of the environment
=

Input audlo Visually-informed Target audio

M -G~ Wﬂ
Dereverberation
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Audio-visual navigation in 3D environments

An agent navigates to a sounding object with vision and audio perception

N Door

C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



Learning with deep reinforcement learning

« Learn to navigate in simulation via trials and errors
 Rewarded +1 for getting close and +10 for reaching the goal

Action ~ [MOVE FORWARD, TURN LEFT, TURN RIGHT, STOP]

ﬁ
Ny

Observation

C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



Navigation policy

Observations, Reward

Spectrogram
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Trained with proximal policy optimization (PPO) [1]

[1] Proximal Policy Optimization Algorithms, John Schulman et al., arxiv 2017
C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



Navigation example

Goal

4X
X
Key messages:

1. Embodied agent can locate sounds by seeing and hearing
2. ADblind agent can also navigate by only using binaural cues
e /

A Agent ] Goal ] Start [ shortestpath [ Agent path [l Seen/Unseen area [ ] Occupied area :Red Frame: Collision
C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020



Limitations of the navigation policy

Existing models learn to act at fixed granularities of action motion
* Chen et al.: learn to generate primitive actions step-by-step
» Gan et al.?: predict target locations and navigate with geometric planner

O Next step action
& Audio Goal

O Audio goal location
& Audio Goal

'SoundSpaces: Audio-Visual Navigation in 3D Environments, Chen et al., ECCV, 2020
2L ook, Listen, and Act: Towards Audio-Visual Embodied, Gan et al., ICRA, 2020




Learning to set waypoints for AV navigation

* Infer audio-visual subgoals with RL end-to-end at varying granularities
« Acoustic memory to help infer goal locations and decide stop actions

i\{ Agent Location

B Occupied Space
O Free Space

] Unexplored Space

Acoustic Map

Audio Intensity

AN TTVINRYTIVI

@ Audio-Visual Waypoint :‘{t L Egocentric View  Binaural Audio
& Audio Goal : v 3 ‘ Spectrograms

Changan Chen et al., Learning to Set Waypoints for Audio-Visual Navigation, ICLR 2021



Audio-visual waypoints navigation model (AV-WAN)

A

Environment

i

Path Planner

@ Waypoint

@ Agent

O Navigable node
== Planned path
== Traversed path
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Changan Chen et al., Learning to Set Waypoints for Audio-Visual Navigation, ICLR 2021

32



Waypoint selection and acoustic memory
R

N

A Agent ] Goal [ Start waypoint [JlI Normalized intensity [l Seen/Unseenarea | | Occupied area

Our model dynamically selects waypoints and builds an acoustic memory as it n{?@w .
z/y
33

Changan Chen et al., Learning to Set Waypoints for Audio-Visual Navigation, ICLR 2021



Navigation results

« Strongly outperforms all baselines and existing methods
« Generalizing to unheard sounds and unseen environments

80

SPL (%)

N
o

Ill II  Hm

Heard Unheard

m Direction Follower m Frontier Waypoints m Supervised Waypoints
Gan et al. [ICRA20] |mChen et al. [ECCV20] |mAV-WaN

Changan Chen et al., Learning to Set Waypoints for Audio-Visual Navigation, ICLR 2021
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Navigation trajectories

« Gan et al. [ICRA 20]: is prone to errors and often leads the agent to backtrack
« Chen et al. [ECCV20]: oscillates around obstacles
« AV-WaN (Ours): reaches the goal most efficiently

Gan et al. [ICRA20] Chen et al. [ECCV20] AV-WaN (Ours)
A Agent ] Start @ Waypoint [l Shortest path [l Agent path [[gill Seen/Unseen area [ | Occupied area ( A
) |

K7,

35
Changan Chen et al., Learning to Set Waypoints for Audio-Visual Navigation, ICLR 2021



Limitations of the AudioGoal task

AudioGoal task (Chen et al. ECCV 2020, Gan et al. ICRA 2020):
* The sound is constant and periodic (it covers the whole episode)
* The goal has no visual embodiment

Agent’'s egocentric view Top-down map

————

Telephone

not present! N |

;. N

The égent searches for the ringing telephone in an unfamiliar environment

36



Semantic AudioGoal

Agent’s egocentric view Top-down map

» X

1ﬂb

Wear headphones
for spatial sound

The agent must continue navigating even after the sound stops

Our proposed semantic AudioGoal task:
* The sound is associated with a semantically meaningful object

* The sound is not periodic and has variable length < \!

\ ltyv
) )] )
// /]

)

&

37
Changan Chen et al., Semantic Audio-Visual Navigation, CVPR 2021



Semantic AudioGoal dataset

« Augment an existing simulator SoundSpaces’ with semantic sounds
« 21 object categories in Matterport3D2: chair, TV, cabinet, sink etc.
« Object-emitted sounds and object-related sounds

'Changan Chen et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020 [ ?““E‘ '
2Angle Chang et al., Matterport3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017 N 7

Changan Chen et al., Semantic Audio-Visual Navigation, CVPR 2021



Semantic Audio-Visual Navigation (SAVi)

Environment
Al
M Policy Network M,
€ s
E&!" S ==
Key ideas:
1. Goal descriptor to infer sound’s semantic type and position

— 2. Employ transformer to handle sporadic acoustic events I
” . at

Dt—l

Binaural Spectrograms Observation Encoder Goal Descriptor Network

Changan Chen et al., Semantic Audio-Visual Navigation, CVPR 2021



Navigation results

« SAVi strongly outperforms all existing methods
* Generalizing to unheard sounds

35
~~
30
X
N
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b 25
3
O 20
>
)
) . .
10
Heard Unheard
= Gan et al. [ICRA 2020] Chen and Jain et al. [ECCV 2020] = AV-WaN [ICLR 2021] |
m SMT + Audio [CVPR 2019] m SAVi (Ours) . @\
</'&",‘//,,|,|
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Changan Chen et al., Semantic Audio-Visual Navigation, CVPR 2021



Navigation example

Object: Chest of drawers Sound: Opening and closing a drawer
C_t: chest of drawers

S R

7> Embodied agents can learn about how objects look and sound
& ,i through interactions with a 3D scene

25
o i
A Agent Object | Viewpoint | Start B Path w/ sound BB Path w/o sound B Shortest path Ll Seen/Unseen | | Occupied L

The agent identifies it's drawer sliding sound and locates the target object with
vision after the sound stops.

41
Changan Chen et al., Semantic Audio-Visual Navigation, CVPR 2021



Beyond navigation: recognition and synthesis

» Recognizing human speech in spaces is challenging due to reverberation
» Synthesizing sounds that are consistent with visual observations
« Requires studying perception separately from decision-making

»
_—e ™ r4
v

Robotics Home assistance AR/VR



4D audio-visual perception

My research: learning the correspondence
between sight and sound in spaces

!

Simulating sounds in spaces Navigating with sounds in spaces

!

!

Synthesizing sounds in spaces

SoundSpaces [ECCV20]

Audio-visual navigation SoundSpaces [ECCV20]

eft Right
Audio Spectrogram
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@ Audio-Visual Waypoint
& Audio Goal £

Egocentric View  Binaural Audio
Spectrograms

Semantic audlo-V|suaI navigation [CVPR21]
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Visual acoustic matching [CVPR22]

Target Space

Source Audio Output Audio

»M@M

Novel-view acoustic synthesis [CVPR23]

audio: target viewpoint

Audio-visual dereverberation [ICASSP23]

Panoramlc V|ew of the environment
=

Input audlo Visually-informed Target audio

M -G~ Wﬂ
Dereverberation
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Matching acoustics

Can we alter the acoustic signature of the sound if we understand the
acoustics of the space based on visuals?

Augmented reality Film dubbing Video conferencing

44
Changan Chen et al., Visual Acoustic Matching, CVPR 2022



The visual acoustic matching task

We propose to transform the sound recorded in one space to another

depicted in the target visual scene.
Target Space

Source Audio Output Audio

Changan Chen et al., Visual Acoustic Matching, CVPR 2022



The visual acoustic matching task

We propose to transform the sound recorded in one space to another

depicted in the target visual scene.
Target Space

Main challenges:
1. Crossmodal (audio-visual) reasoning
2. Obtaining the right data for the task

e = N

Source Audio Output Audio

olb— G

Changan Chen et al., Visual Acoustic Matching, CVPR 2022



The visual acoustic matching task

We propose to transform the sound recorded in one space to another

depicted in the target visual scene.
Target Space

Key ideas:
1. Reasoning how image regions affect acoustics with attention
2. Leveraging Web videos with self-supervision for learning

=

Source Audio Output Audio

olb— G

Changan Chen et al., Visual Acoustic Matching, CVPR 2022



Audio-Visual Transformer for Audio Generation

Input Image I Cross-modal Encoder

[ Feed Forward ]

—>» ResNet-18 —

[ Convolution ] M. __—L_'-L__,_I_

> _ T",, -_ s 3 , f l 1D Z;"
Conv.
1D - (] W A= oo o
Conv. r
4 lmmllllumﬂl)ll"nulil\llumnwn +
[ Self Attention ] |
Acoustlcs Alteration 1 ,ZXCJ}): Multi-resolution
Speech Loss

[ Feed Forward ]
/NX T

t iff no mismatched audio

ar W

Changan Chen et al., Visual Acoustic Matching, CVPR 2022



Acoustics alteration strategy

Goal: create audio with the same content but different acoustics as self-supervision.

' _--nfll‘

Dereverberation ~  Acoustic Randomization Adding Noise

) ) > 9 ) M) )
» ) » ) »

Changan Chen et al., Visual Acoustic Matching, CVPR 2022



Experiment results

« Experiment on both synthetic and web video datasets
. Strongly outperforms traditional and heavily supervised approaches

SoundSpaces-Speech Acoustic AVSpeech [4]
Seen Unseen Seen Unseen
STFT | RTE (s) | MOSE | STFT | RTE (s) | MOSE | RTE (s) | MOSE | RTE (s) | MOSE
Input audio 1.192 | 0.331 0.617 | 1.206 | 0.356 | 0.611 0.387 | 0.658 | 0.392 | 0.634

Blind Reverberator [1] | 1.338 | 0.044 | 0.312 - - -
Image2Reverb [2] 2538 | 0.293 | 0.508 | 2.318 | 0.317 | 0.518 - - - -
AV U-Net [3] 0.638 | 0.095 | 0.353 | 0.658 | 0.118 | 0.367 | 0.156 | 0.570 | 0.188 | 0.540

AViTAR w/o visual 0.862 | 0.140 | 0.217 | 0902 | 0.186 | 0.236 | 0.194 | 0.504 | 0.207 | 0.478
AViTAR 0.665 | 0.034 | 0.161 | 0.822 | 0.062 | 0.195 | 0.144 | 0.481 | 0.183 | 0.453
[1] More than 50 years of artificial reverberation, Vesa Valimaki, et al., DREAMS 2016 STFT: distance between mag spectrogram
[2] ImageZreverb: Cross-modal reverb impulse response synthesis, Nikhil Singh et al., ICCV 2021 RTE: errors of RT60 (time of reverb decaying by 60dB)

[3] 2.5d visual sound, Ruohan Gao and Kristen Grauman, CVPR 2019

[4] Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech
Separation, Ariel Ephrat et al., SIGGRAPH 2018

Changan Chen et al., Visual Acoustic Matching, CVPR 2022

MOSE: errors of MOS (measures speech quality)



Examples on SoundSpaces-Speech

In this example, we show comparison of our model with baselines on
SoundSpaces-Speech (unseen).
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[1] Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis, Singh et al., ICCV 2021
[2] 2.5D Visual Sound, Gao et al., CVPR 2019

Changan Chen et al., Visual Acoustic Matching, CVPR 2022
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Matching different environments on AVSpeech

Auditorium

Oice

AViTAR D) <D) D)

RT60 0.34s 0.40s 0.58s

Our AVIiTAR model reasons the image content and learns to inject
more reverberation into the speech as the environment gets larger.

52
Changan Chen et al., Visual Acoustic Matching, CVPR 2022



Can we synthesize fine-grained acoustics?

« Many of our important life moments are recorded in videos

 Videos are however passively collected from one viewpoint

* Recreating the moment in 3D is important for immersive AR/VR applications
* Novel-view synthesis (NVS) is vision-only and does not handle sound

53




Novel-view acoustic synthesis

We propose the novel-view acoustic synthesis task:

visual:

target
viewpoint
' x

(only

i for reference)

novel-view
acoustic
synthesis

LI

target viewpoint

....................................................

.....................................................

| ovvas) J L

.

.....................................................

prediction

_/W\/

audio: source viewpoint pose audio: target viewpoint

Changan Chen et al., Novel-View Acoustic Synthesis, CVPR 2023

54



Difference between NVS & NVAS

Novel-view synthesis (NVS): Novel-view acoustic synthesis (NVAS):.

« 3D scenes change limitedly during « Sound changes substantially over time
the recording

« Camera capti t best weakly

directional m: 1- Lack of supporting dataset and benchmark

- Frequency of 2. Lack of existing model that is capable of NVAS  \ide range of
providing spa
triangulation dhu scyrrcriauurt « Sounds are often mixed together

Changan Chen et al., Novel-View Acoustic Synthesis, CVPR 2023



Replay-NVAS dataset

calibration patterns (1-3)
(removed for acting)

m colour target
(removed for acting)
& DSLR camera (1-8)
wc binaural
microphone (1-8)

" " operator (1-3)

wearing GoPro

near-range (wearable)
microphone

‘ ceiling 360° camera

Changan Chen et al., Novel-View Acoustic Synthesis, CVPR 2023

DSLR 8+ BM 8 W(

[height=1m] 6

DSLR 4 + BM 4&

[height=1.56m] / /

68 scenes of social interactions, 2-4 actors per scene
8 surrounding viewpoints, equipped with DSLR cameras and binaural mics

Each actor has a near-range mic to record their voice
Over 50 hours of video data

DSLR 3+ BM 3
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Replay-NVAS example

Changan Chen et al., Novel-View Acoustic Synthesis, CVPR 2023



SoundSpaces-NVAS dataset

« Constructed based on SoundSpaces 2.0 audio-visual simulator

 Renders acoustic effects such as direct sound, reverberation,
transmission, and diffraction

« Use LibriSpeech? (audio book) as the source audio

* 1,000 speakers, 120 3D scenes, 200K viewpoints and 1.3K hours of
audio-visual data

'SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning, Chen et al., NeurlPS 2022
2Librispeech: An ASR corpus based on public domain audio books, Chen et al., ICASSP 2015

Changan Chen et al., Novel-View Acoustic Synthesis, CVPR 2023



Visually Guided Acoustic Synthesis (VIGAS)

Learn an implicit neural transfer function that reasons the sound source
location, acoustics of the space and the target pose in 3D to synthesize the
target sound.

avl e
] . M x
ambient Sk : o :
5 A : . tanh o S
A_S, source > é Ey N dilated — 2 _.6}_> Al;jrl
separation Ac 2 somyll 5 synthesized
» convlD : audio
. (@) P o A v
: sin| @ v
S : > 2 > O ANV,
Vs VE : dilated - 3
— encoder —1 x1—+Vr — ) =
convlD o :
O o : acoustic ~ \
active speaker localization » Vi : —» conv1lD . temporal
: synthesis :
. Vo i i | alignment
target mlcrophone PT encode - 1 J
: . — en r —
viewpoint M AST T Ar
fusion ™

Changan Chen et al., Novel-View Acoustic Synthesis, CVPR 2023



Results

* Experiment on both single environment and novel environment
» Outperforms traditional approaches and audio-only ablation
« Generalizing to novel environment with single view is non-trivial

SoundSpaces-NVAS Replay-NVAS
Single Environment Novel Environment Single Environment

Mag LRE RTE Mag LRE RTE Mag LRE RTE

Input audio 0.225 1473 | 0.032 | 0.216 | 1.408 | 0.039 | 0.159 | 1.477 | 0.046

TF Estimator [1] 0.359 | 2596 | 0.059 | 0.440 | 3.261 | 0.092 | 0.327 | 2.861 | 0.147

DSP [2] 0.302 | 3.644 | 0.044 | 0.300 | 3.689 | 0.047 | 0.463 1.300 | 0.067

VAM [3] 0.220 | 1.198 | 0.041 | 0.235 1.131 | 0.051 | 0.161 | 0.924 | 0.070

ViGAS w/o visual | 0.173 | 0.973 | 0.031 | 0.181 1.007 | 0.036 | 0.146 | 0.877 | 0.046

ViGAS 0.159 | 0.782 | 0.029 | 0.175 | 0971 | 0.034 | 0.142 | 0.716 | 0.048
[1] Extrapolation, interpolation, and smoothing of stationary time series. Norbert Wiener. Report of the Services 19, 1942 =
[2] Introduction to head-related transfer functions (hrtfs): representations of hrtfs in time, frequency, and space. Cheng et al., AES 23()

[3] Visual Acoustic Matching, Chen et al., CVPR 2022



Replay-NVAS example 1
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Replay-NVAS example 2
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Qualitative examples on SoundSpaces-NVAS

Here we show that for one source viewpoint, our model predicts the audio
for four different viewpoints.

]

L R
Source Prediction Q z>>>




Audio-visual dereverberation

Can we strip away reverberation with visual cues?

» We propose the audio-visual dereverberation task
* Model dereverberates better with visual information
 Demonstrates on several downstream tasks

Input audio Viéually-infmed R Target audio

!
—»@—»

Dereverberation

Changan Chen et al., Learning Audi-Visual Dereverberation, ICASSP 2023



Qualitative examples

Panorama RGB Clean (GT) Reverberant De-reverberated

0
W\

Classroom, close speaker

Changan Chen et al., Learning Audi-Visual Dereverberation, ICASSP 2023



Summary

Simulating sounds in spaces Navigating with sounds in spaces Synthesizing sounds in spaces
SoundSpaces [ECCV20] Audio-visual navigation SoundSpaces [ECCV20] Visual acoustic matching [CVPR22]

! !

Simulator & Datasets Tasks Algorithms

* SoundSpaces 1.0 & 2.0 » Audio-visual embodied Al « Multimodal navigation policies
« SoundSpaces derived * Visual-acoustic learning « Self-supervision for VAM

* Multi-view AV datasets * Multimodal NVS » Multimodal fusion & generation
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Thank you!



