# Learning Audio-Visual Dereverberation

Changan Chen<sup>1,2</sup>, Wei Sun<sup>1</sup>, David Harwath<sup>1</sup>, Kristen Grauman<sup>1,2</sup> UT Austin<sup>1</sup>, FAIR<sup>2</sup>



### Reverberation in Our Daily Life

- Reverberation is everywhere in our daily life
- Audio signal reflects off surfaces and objects
- Function of room geometry, materials and speaker location





# Reverberation Impacts Speech Recognition

- Reverberation damages the performance of automatic speech recognition
- Dereverberation: restore the clean speech
- Applications: robotic speech recognition, video conferencing, AR/VR

![](_page_2_Picture_4.jpeg)

# Audio Dereverberation and Speech Enhancement

- Prior work only uses audio for dereverberation
- MetricGAN+
  - State-of-the-art speech enhancement algorithm
  - Optimizes the speech metric (PESQ) directly
- Room-aware dereverberation
  - Room characteristics are estimated from reverberation in the audio

# Visual Understanding of Room Acoustics

- Room acoustics:
  - How sound propagates in a closed or seme-closed space
  - Can be measured by room impulse response
  - Macro characteristics: Reverberation time by 60dB(RT60), Direct-to-reverberant ratio (DRR) etc.
- Image2Reverb:
  - Generate RIRs with generative models based on single images
  - Images taken at an unknown location different from the microphone
- Goal: to estimate room acoustics features from visual for dereverberation

![](_page_4_Picture_9.jpeg)

#### The Audio-Visual Dereverberation Task

The reverberant speech  $A_r$  can be modeled as:

 $A_r(t) = A_s(t) * R(t)$ 

 $A_s(t)$  is the anechoic source speech and R is the room impulse response.

Given the RGB  $I_r$ , depth Image  $I_d$ , received audio  $A_r$ , predict  $A_s$  $\hat{A}_s(t) = f_p([I_r, I_d, A_r(t)])$ 

#### Dataset Curation

- Obtaining the right data is challenging
- Video data does not have clean anechoic signal
- Recorded RIR datasets do not have camera at mic locations or speaker
- Introduce both simulated and real data

# Simulated Data

- The ability to control environment settings (positions of the speaker, listener, speech content and room)
- Use the audio-visual simulator SoundSpaces and Matterport3D
- Use LibriSpeech as the source speech corpus
- Insert a 3D humanoid of the same gender at the speaker location

Panorama

Spectrogram

- Panorama: 18 images of FOV 20 (192x756)
- Normal view: 4 images of FOV 20 (384x256)

![](_page_7_Picture_7.jpeg)

#### SoundSpaces Demo

![](_page_8_Picture_1.jpeg)

SoundSpaces: Audio-Visual Navigation in 3D Environments, Changan Chen\*, Unnat Jain\*, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu, Philip Robinson, Kristen Grauman, ECCV 2020

# Real Data Collection

- Use iPhone 11 pro camera to capture panoramic RGB image
- Use monocular depth estimation algorithm to generate depth
- Microphone: ZYLIA ZM-1 mic (1 channel)
- Play utterances through a loudspeaker held by a person
- Varying environments: auditoriums, meeting rooms, atriums, corridors and classrooms
- Varying speaker location from near-field to mid-field to far-field
- Record ambient sound during recording

![](_page_9_Picture_8.jpeg)

#### Visually-Informed Dereverberation of Audio

![](_page_10_Figure_1.jpeg)

# Training

• Magnitude loss:

$$L_{magnitude} = ||M_s^i - \hat{M}_s^i||_2.$$

• Phase loss:

$$L_{phase} = ||\sin(P_s^i) - \sin(\hat{P}_s^i)||_2 + ||\cos(P_s^i) - \cos(\hat{P}_s^i)||_2.$$

• Reverb-visual matching loss:

 $L_{matching}(e^{c}, e^{s}, e^{s}_{n}) = \max\{d(f_{n}(e^{c}), f_{n}(e^{s})) - d(f_{n}(e^{c}), f_{n}(e^{s}_{n})) + m, 0\}.$ 

• Overall objective:

$$L_{total} = L_{magnitude} + \lambda_1 L_{phase} + \lambda_2 L_{matching},$$

# Evaluation Tasks and Metrics

- Speech Enhancement (SE):
  - Improve the sonic quality of speech signal
  - Metric: Perceptual Evaluation of Speech Quality (PESQ)
- Automatic Speech Recognition (ASR):
  - Transcribe the sequence of words that spoken in the audio
  - Metric: Word Error Rate (WER)
  - Evaluate with pretrained model and finetuned model
- Speaker Verification (SV):
  - Detect whether two utterances were spoken by the same speaker
  - Metric: Equal Error Rate (EER)
  - Evaluate with pretrained model and finetuned model

#### Baselines

- MetricsGAN+: state-of-the-art SE model, learning based
- WPE: statistical SE model
- Audio-only dereverberation: an ablation of the proposed VIDA model

# Results in Scanned Environments

- VIDA outperforms all baselines
- Panorama input leads to better results compared to normal FOV
- Reverb-visual matching loss help the model learn a better feature representation
- Removing human meshes leads to performance drop

|                                                                             | Speech Enhancement<br>  PESQ ↑                                  | $\begin{vmatrix} Speech \\ WER (\%) \downarrow \end{vmatrix}$ | <i>Recognition</i><br>WER-FT (%)↓                                                              | Speaker<br>EER (%)↓                                 | Verification<br>EER-FT (%)↓                                                                    |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|
| Clean (Upper bound)                                                         | 4.64                                                            | 2.50                                                          | 2.50                                                                                           | 1.62                                                | 1.62                                                                                           |
| Reverberant<br>MetricGAN+ [16]<br>WPE [45]<br>Audio-only dereverb.          | 1.54         2.33 (+51%)         1.63 (+6%)         2.32 (+51%) | 8.86<br>7.49 (+15%)<br>8.18 (+8%)<br>4.92 (+44%)              | 4.62<br>4.86 (-5%)<br>4.30 (+7%)<br>3.76 (+19%)                                                | 4.69<br>4.67 (+0.4%)<br>5.19 (-11%)<br>4.67 (+0.4%) | 4.57<br>2.75 (+39%)<br>4.48 (+2%)<br>2.61 (+43%)                                               |
| VIDA w/ normal FoV<br>VIDA w/o matching loss<br>VIDA w/o human mesh<br>VIDA | 2.33 (+51%)<br>2.38 (+55%)<br>2.31 (+50%)<br>2.37 (+54%)        | 4.85(+45%)4.59(+48%)4.57(+48%)4.44(+50%)                      | <ul> <li>3.73 (+19%)</li> <li>3.72 (+19%)</li> <li>3.72 (+19%)</li> <li>3.66 (+21%)</li> </ul> | 4.53 (+3%)4.02 (+14%)4.00 (+15%)3.99 (+15%)         | <ul> <li>2.79 (+39%)</li> <li>2.62 (+43%)</li> <li>2.52 (+45%)</li> <li>2.40 (+47%)</li> </ul> |

#### Results on Real Data

- VIDA generalizes to real data
- It still outperforms baselines on ASR and SV tasks
- MetricGAN+ does better on speech enhancement

|                      | Speech Enhancement                           | Speech Recognition | Speaker Verification |
|----------------------|----------------------------------------------|--------------------|----------------------|
|                      | PESQ ↑                                       | WER (%)↓           | EER (%)↓             |
| Clean (Upper bound)  | 4.64                                         | 2.52               | 1.42                 |
| Reverberant          | 1.22         1.62 (+33%)         1.41 (+16%) | 18.39              | 3.91                 |
| MetricGAN+ [16]      |                                              | 21.42 (-16%)       | 5.70 (-46%)          |
| Audio-only dereverb. |                                              | 15.18 (+17%)       | 4.24 (-8%)           |
| VIDA w/ normal FoV   | 1.44 (+18%)                                  | 14.71 (+20%)       | 3.79 (+3%)           |
| VIDA                 | 1.49 (+22%)                                  | 13.02 (+29%)       | 3.75 (+4%)           |

### Breakdown of WER

- VIDA outperforms Audio-only dereverb. in most scenarios
- Large environments/distances tend to be more reverberant

|                         | Atrium                                      | Auditorium                               | Meeting Room                                    | Classroom                                | Corridor                                 |
|-------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|
| Near-field<br>Mid-field | 14.10 / <b>8.97</b><br>21.78 / <b>18.94</b> | <b>0.91 / 0.91</b><br><b>5.06 / 6.32</b> | <b>4.98</b> / 6.47<br><b>7.67</b> / <b>7.67</b> | 6.14 / <b>5.26</b><br>2.56 / <b>1.47</b> | 2.15 / <b>1.79</b><br>7.27 / <b>4.36</b> |
| Far-field               | 52.38 / <b>50.52</b>                        | 10.44 / 7.46                             | 21.95 / 6.71                                    | <b>5.91</b> / 6.82                       | 25.23 / 21.10                            |

#### **TSNE** Visualizations

- Color points according to the ground truth distance to speaker
- Color points according to the reverberation time decay by 60 dB (RT60)

![](_page_17_Figure_3.jpeg)

## Simulated Examples

Panorama RGB

![](_page_18_Picture_2.jpeg)

Long corridor, distant speaker, quite reverberant

![](_page_18_Picture_4.jpeg)

Big space, close speaker, quite reverberant

![](_page_18_Picture_6.jpeg)

Large space, out of view, very reverberant

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

Clean (GT)

![](_page_18_Picture_13.jpeg)

Reverberant

# Real Examples

![](_page_19_Picture_1.jpeg)

<sup>\*/</sup>/20

Atrium, close speaker, reverberant

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

When there is a lot of ambient noise and reverberation in the audio, the model almost fails to predict the clean

# Thank you!