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Reverberation in Our Daily Life
• Reverberation is everywhere in our daily life
• Audio signal reflects off surfaces and objects
• Function of room geometry, materials and speaker location



Reverberation Impacts Speech Recognition

• Reverberation damages the performance of automatic speech recognition 
• Dereverberation: restore the clean speech 
• Applications: robotic speech recognition, video conferencing, AR/VR

Panorama RGB Clean (GT) Reverberant



Audio Dereverberation and Speech Enhancement

• Prior work only uses audio for dereverberation
• MetricGAN+
• State-of-the-art speech enhancement algorithm
• Optimizes the speech metric (PESQ) directly

• Room-aware dereverberation
• Room characteristics are estimated from reverberation in the audio 



Visual Understanding of Room Acoustics 
• Room acoustics: 
• How sound propagates in a closed or seme-closed space
• Can be measured by room impulse response
• Macro characteristics: Reverberation time by 60dB(RT60), Direct-to-reverberant 

ratio (DRR) etc. 

• Image2Reverb:
• Generate RIRs with generative models based on single images
• Images taken at an unknown location different from the microphone

• Goal: to estimate room acoustics features from visual for dereverberation
Image         -> Reverb



The Audio-Visual Dereverberation Task

The reverberant speech 𝐴! can be modeled as: 
𝐴!(𝑡) = 𝐴"(𝑡) ∗ 𝑅(𝑡)

𝐴"(𝑡) is the anechoic source speech and R is the room impulse response.

Given the RGB 𝐼!, depth Image 𝐼# , received audio 𝐴! , predict 𝐴"
*𝐴" 𝑡 = 𝑓$( 𝐼! , 𝐼# , 𝐴!(𝑡) )



Dataset Curation
• Obtaining the right data is challenging
• Video data does not have clean anechoic signal
• Recorded RIR datasets do not have camera at mic locations or speaker
• Introduce both simulated and real data



Simulated Data 

Camera Speaker

Panorama

Spectrogram

• The ability to control environment settings (positions of the speaker, 
listener, speech content and room) 

• Use the audio-visual simulator SoundSpaces and Matterport3D
• Use LibriSpeech as the source speech corpus
• Insert a 3D humanoid of the same gender at the speaker location
• Panorama: 18 images of FOV 20 (192x756)
• Normal view: 4 images of FOV 20 (384x256)



SoundSpaces Demo

SoundSpaces: Audio-Visual Navigation in 3D Environments, Changan Chen*, Unnat Jain*, Carl Schissler, Sebastia Vicenc Amengual Gari, 
Ziad Al-Halah, Vamsi Krishna Ithapu, Philip Robinson, Kristen Grauman, ECCV 2020 



Real Data Collection
• Use iPhone 11 pro camera to capture panoramic RGB image
• Use monocular depth estimation algorithm to generate depth
• Microphone: ZYLIA ZM-1 mic (1 channel)
• Play utterances through a loudspeaker held by a person
• Varying environments: auditoriums, meeting rooms, atriums, corridors and classrooms 
• Varying speaker location from near-field to mid-field to far-field
• Record ambient sound during recording



Visually-Informed Dereverberation of Audio
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Training

• Magnitude loss:

• Phase loss:

• Reverb-visual matching loss:

• Overall objective: 



Evaluation Tasks and Metrics 

• Speech Enhancement (SE):
• Improve the sonic quality of speech signal
• Metric: Perceptual Evaluation of Speech Quality (PESQ)

• Automatic Speech Recognition (ASR):
• Transcribe the sequence of words that spoken in the audio
• Metric: Word Error Rate (WER)
• Evaluate with pretrained model and finetuned model

• Speaker Verification (SV):
• Detect whether two utterances were spoken by the same speaker
• Metric: Equal Error Rate (EER)
• Evaluate with pretrained model and finetuned model



Baselines

• MetricsGAN+: state-of-the-art SE model, learning based
• WPE: statistical SE model 
• Audio-only dereverberation: an ablation of the proposed VIDA model



Results in Scanned Environments
• VIDA outperforms all baselines 
• Panorama input leads to better results compared to normal FOV
• Reverb-visual matching loss help the model learn a better feature representation
• Removing human meshes leads to performance drop



Results on Real Data
• VIDA generalizes to real data
• It still outperforms baselines on ASR and SV tasks
• MetricGAN+ does better on speech enhancement 



Breakdown of WER

• VIDA outperforms Audio-only dereverb.  in most scenarios
• Large environments/distances tend to be more reverberant



TSNE Visualizations

• Color points according to the ground truth distance to speaker
• Color points according to the reverberation time decay by 60 dB (RT60)

Audio TSNE Visual TSNE



Simulated Examples 

Long corridor, distant speaker, quite reverberant

Panorama RGB Clean (GT) Reverberant De-reverberated by VIDA

Big space, close speaker, quite reverberant

Large space, out of view, very reverberant



Real Examples
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Classroom, close speaker, not very reverberant

Classroom, distant speaker, quite reverberant

Panorama RGB Clean (GT) Reverberant De-reverberated by VIDA

Atrium, close speaker, reverberant



Failure Cases

21

When there is a lot of ambient noise and reverberation in the audio, the 
model almost fails to predict the clean

Panorama RGB Clean (GT) Reverberant De-reverberated by VIDA

Atrium, distant speaker, very reverberant



Thank you!


